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Abstract—The paper presents an analysis of the formalism of topological approach to analyzing poorly formal-
ized problems based on the fundamental concepts of functional analysis. The results of the analysis made it pos-
sible to formulate a plethora of new approaches to the definition of the lattice estimates and of the ways of intro-
ducing metrics on lattices which arise over the topologies of the feature values. In particular, the use of so-called
“support chains” to analyze Boolean lattices formed over Zhuravlev-regular sets of precedents allowed here to
formulate a cutting-edge research area that consists in replacing the estimates of the lattice elements with certain
types of the functions and/or of the vectors.The analysis also allowed to propose several new approaches to a
systematic study of semiempirical (tunable) distance functionals known from the literature. These functional are
applied as means to generate feature descriptions in the course of solving various applied problems. The analysis
of the precedents’ relations between the feature values and the target variable as sets of interactions of Boolean
lattice elements indicated the possibility of generating synthetic features using metric distance functions. The
paper formulates a few of perspective approaches for (1) estimating the relevance (or “informativeness”) of the
metrics in respect to the problems to be solved, and for (2) generation/selection of synthetic features, more
informative than the initial feature descriptions (that generated the topology and the corresponding lattice). The
paper also presents the results of experimental testing the algorithmic approaches based on the formalism devel-
oped. The computational experiments were performed with 2400 independent datasets from ProteomicsDB
dealing with “molecule-numerical property” type of data. The experiments allowed to produce quite efficient
algorithms for predicting numerical properties of the molecules (rank correlation in cross-validation was found
to be 0.90 ± 0.23 when averaged over the 2400 datasets). The analysis of the results of experimentation indicated
the metrics that most often generate the most informative synthetic features and the forms of corrective opera-
tions characterized by the best generalization ability.
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1.INTRODUCTION
The research area called in brief “topological the-

ory of pattern recognition” is an extension of the alge-
braic approach to pattern recognition developed in the
scientific school of Yu. I. Zhuravlev and K. V. Ruda-
kov for poorly formalized problems of pattern recogni-
tion, classification, and numerical prediction [13, 14].
The algebraic approach to finding solutions of the pat-
tern recognition/classification problems studies algo-
rithmic constructions of the form  =

 where  is the pattern-recognizing
(or simply “recognizing”) operator,  is the corrective

θ( )Â
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operation (corrector),  is the decision rule, and
 are the corresponding vectors of the

algorithm’s parameters [13].

Algorithms of the form  are applied to input
data about objects (information matrix ) receiving

answers from the algorithm . In the case of a

correct algorithm , where the infor-
mation matrix  describes the output data about
objects in the corresponding set of precedents Q =
( , ). Algorithm “training” by the set of prec-
edents Q is considered to be a way to compute the vec-
tor . The algorithm trained by Q is ε-correct with
respect to the test  = ( , ) if

D̂
θ = θ θ θ( , , )A D C B

θ( )Â
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, where  is particular loss
function. Various combinatorial functionals com-
puted as part of the cross-validation design of compu-
tational experiments are introduced to evaluate the
generalization ability of the algorithms [8–10].

An important direction of research in searching for
the ε-correct algorithms in the scientific school of
Yu. I. Zhuravlev–K. V. Rudakov is the study of the
solvability and of the regularity of the problems Z(Q),
Q = ( , ) to which the algorithms of the form

 are applied. Here the sets of precedents Q are
considered as subsets of the Cartesian product of the
set of initial informations (Ii) and of the set of finite
informations (If), . Algorithms of the form

 (i.e., without a decision rule) can be
applied for predicting the numerical target variables
[6].

The results of the previous theoretical studies and a
considerable experience in searching for practical
applications of the constructs described here indicate
that it is reasonable to construct the operators ,

,  etc. within the framework of the topologi-
cal approach to the data analysis [6]. The target vari-
ables (i.e., the numerical values of any quantity or
numerical labels of classes) are represented within the
formalism as chains in a lattice constructed over cor-
responding topology. One of the main goals of this
theory of the “topological pattern recognition” is to
develop methods of systematic generation and of
selection of the synthetic feature descriptions of
objects, which would be characterized by greater
informativeness than the original features [3].

This paper proposes a development of the formal-
ism in the direction of a more detailed analysis of the
structure of the lattice chains arising over arbitrary but
Zhuravlev-regular sets of precedents. The practical
applicability of the proposed formalism is illustrated
by applying it to the problems from the area of phar-
macoinformatics.

2. THE NOTATION AND THE DEFINITIONS

In the formalism developed, each object x from the
set of initial descriptions of N0 objects,

, , is described by n features

using functions  (where  is
the set of values of feature descriptions) and is thus
represented by the sets { }, k = 1, …, n + l,
where l is the number of the target (to be predicted)
variables. The value of the t-th target variable of the
object x, t = n + 1, …, n + l, is computed by the func-
tions .
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We explain the meaning of the notation 
as follows. Object descriptions in  are repre-
sented in some form corresponding to the problem
domain (e.g., structures of molecules in chemoinfor-
matics, crystal structures in solid state physics, sym-
bolic sequences in bioinformatics, tables with patients’
data in biomedicine etc.). Each function  com-
putes the value of the k-th feature description for the
original description of the object, , used in the
problem domain. The functions  introduce
thereby a formal description of the object by the k-th
feature. The function , being a function of the
full prototype of the value  of the k-th feature,
maps this feature value into a subset of objects charac-
terized by this same feature value. Thus, “ ”
denotes a specific subset of the set  associated with a
particular value of the k-th feature.

The set of the precedents over the space of admis-
sible feature descriptions of objects is defined as
Q = ϕ( ) =  by the functions

 and ϕ( ) = ,  =
 × … ×  × … × . If the Zhurav-

lev-regularity of the set of the precedents is assumed
(which formulated as , x = D–1(D(x))), the-
n is isomorphic to Q and both of the sets uniquely
correspond to the topology T( ) = {∅, , ,

,  = { }} and to the Boolean
lattice L(T( )) = { , , }. These
descriptions of the set of objects  remain the same
regardless of the type of feature descriptions of objects
(Boolean, categorical, or numerical) [7–9]. The con-
cepts of the “lattice estimate”, of “homogeneous
functions”, and of the “operator of the formation of
empirical distribution functions” are applied to intro-
duce the metrics along with some auxiliary operations
(Definitions 1–4).

Definition 1. A lattice term or an isotonic estimate
 over L(T( )) is the function for which the

estimate condition (cE:  =

) and isotonicity condition (cI:
 ⇒ ) are satisfied. As noted

above, the existence of the metric  is guaran-
teed for .

Definition 2. We call arbitrary functions homoge-
neous when they have the same domain of definition
(i.e., constructed over the same set of the argument’s
values) and the same domain of values.

Definition 3. Let there be a finite set of numbers,
A = , . Define the operator

 to form an empirical distribution function (EDF)
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of numbers over the set as a  =
,  such that (–

∞)  = 0, (+∞)  = 1. We also write  as  for
brevity.

Definition 4.  is an operator for computing the
mathematical expectation of the value  by EDF

 as  = , where

, , and the arbitrary ,
, where  is an operator of forming the set of

values in ,  = ,

,  is a set ascending ordering opera-
tor; and  is the j-th element of the ordered set

. The other EDF momentum functionals are
defined in similar manner.

3 THE ANALYSIS OF THE TOPOLOGICAL 
APPROACH CONSTRUCTS 

IN TERMS OF THE REFLEXIVE 
AND THE TRANSITIVE RELATIONS

Consider the topological approach to the pattern
recognition including the construction of the topology
T( ), of the lattice L(T( )) and the introduction of
the appropriate metrics in terms of the fundamental
concepts of function theory—the reflexive and the
transitive binary relations between arbitrary sets. Only
two such relations are used in mathematics: the sym-
metric equivalence relation of sets and the antisym-
metric relation of (partial) order [2].

The precedent-based relation between the feature
values  and the t-th target variable given by the
set Q projected into the lattice L(T( )) corresponds to
the set of pairs {({ , k = 1, …, n},

), i = 1, …, N0}. Based on the precedents
represented in a regular Q, any pattern recognition
algorithm (or “machine learning” in general) builds a
model of the relation described by the values of 
and , i.e., between the collection of sets
{ } and the set .

Focus on two arbitrary sets, a =  and b
= . Clearly, the satisfiability of the equiva-
lence or order relation between sets a and b in the gen-
eral case is out of the question (because the equiva-
lence corresponds to the identity of the k-th feature of
the t-th target variable and partial order corresponds to
kernel equivalence – i.e., the equivalence of a to the
subset b or vice versa). These cases are trivial and cor-
respond as a rule to an “easily solvable” recognition
problem.
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At the same time, the order relations existing in the
lattice L(T( )) generate the supremum  and the
infimum  of sets a and b. Therefore, more com-
plex functionals over the sets a, b, ,  can be
introduced within the topological theory of pattern
recognition. The primary interest represent the func-
tionals which describe the relations between the arbi-
trary a and b in terms of distances. If the four metric
axioms are satisfied, these distance functionals,

 form the metric space of feature values,
.

Note that the simplest metric is the functional
 =  – , where 

is an isotonic estimate on L(T( )) (see Definition 1).
More complex definitions of  are possible by intro-
ducing parametric estimates [7] or using metrics
known in the literature so that in general there is a
number of metrics , m = 1, …, m0. The metrics 
are typically normalized to the interval of values
[0…1].

Returning to the consideration of fundamental
relations of the theory of functions, we can conclude
that the metric (a, b) is a functional that numeri-
cally evaluates the satisfiability of the equivalence rela-
tion between a and b based on order relations (in the
form of , ). Indeed, (a, b) = 0 corre-
sponds to the strict satisfaction of the equivalence rela-
tion of a and b, and (a, b) = 1 corresponds to the
maximum possible distance between a and b (for
example, (a, b) is 1 only for the sets ∅ and , which
corresponds to the ends of the maximum chain of the
lattice L(T( )).

Thus, the relation between the sets { }
and { } can be modeled as the corresponding
distance arrays generated by a particular metric . In
this paper, we investigate the ways of defining such
distances and the methods of generating the synthetic
feature descriptions over these arrays of the values of
the metric distances.

4. ON THE DIFFERENT APPROACHES 
TO THE DEFINITION OF METRICS 

ON THE LATTICE L(T( ))
At least three fundamentally different ways of

defining metric distances are known in the literature:
(1) the metrics based on operations over arbitrary sets,
(2) the metrics over the spaces of vectors, and (3) the
metrics over the space of functions. Consider these
three approaches as applied to the above-described
constructs of the topological theory of pattern recog-
nition.

Metrics based on the operations over sets. We men-
tioned in the Introduction metrics of distance estimate
between a, b ∈  introduced as functionals over
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 (corresponding to ),  ( ), ele-
ment height estimates in L(T( )), and other set-the-
oretic operations over sets a, b. It was proposed in [6]
to use weighted isotonic lattice estimates (  =

) based on parametric estimates  ( ,

, dα, etc.) to generate metrics tunable via rank-based
optimization of , .
The sets  can be formed on the basis of the “informa-
tiveness” of the relevant  by the methods of the
metric data analysis [11] or on the basis of different
subchains of the target numerical variables.

At the same time, there are numerous known func-
tionals of empirical nature which directly operate with
sets: distances of Tanimoto, Rand, Russell-Rao,
Simpson, Brown-Blanquet, Roger-Tanimoto, Faith,
of dispersion, of images, Q0, of Pearson and various
versions of Tversky, Sokal-Sneath, Gower-Legendre,
and Yulee distances, among others. [1]. The metric
properties of these functionals can be demonstrated by
analytical derivations or by a combinatorial analysis
over a set of precedents.

Vector metrics. Alternatively to the weighted lattice
method and based on a collection of sets  and a num-
ber of estimates  for an arbitrary set ,

the vector ‾  = , , …,  can be
computed and the metrics can be introduced already
on the vector space  by means of the well-known
approaches including (weighted/normalized) l1-met-
rics, Minkowski lp-metrics, distances of Penrose,
Manhattan, Lorentz, Clark, Hellinger, Whittetaker,
symmetric χ2, Mahalanobis (including adjustable
weights), intersection distances, of Ruzecki, Roberts,
Ellenberg, Gleason, Motyka, Bray-Curtis, Canberra,
Kulczynski, and correlation distances (covariance,
correlation, cosine, angular, chordal, similarity,
Morisita-Horn, Spearman, and Kendall).

Metrics over the space of functions. The functional
analysis and the probability theory provide a wide
range of tools for defining the distances between func-
tions with the same domain of definition including
functionals of Kolmogorov (the maximum deviation),
of von Mises, and of Renyi, various metrics (integral
L1, engineering, separations, and similarity of the har-
monic mean), distances of Chebyshev, Stepanov, and
Kuiper, distance versions of Zolotarev, Kruglov,
Burbi-Rao, Bhattacharya, Chizar (including Kull-
back-Leibler divergence, χ2, and Hellinger distance)
among others [1].

Clearly, some of these distance functions are
admittedly not metrics. For example, the symmetry
axiom is obviously violated in the Kullback-Leibler
divergence; the satisfiability estimate of the triangle
axiom for each of these functions requires a separate
study. Metrification of these distance functions can be
carried out by introducing additional constructs in the

∨a b ∪a b ∧a b ∩a b
X
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definition of the function. In particular, if there is no
symmetry, the constructs like min(d(x, y), d(y, x)),
max(d(x, y), d(y, x)) and others can be introduced for
the function d(x, y). The main problem is “to tie”
these approaches to the lattice formalism being devel-
oped. Some important concepts defined above in
Definitions 1–4 can be used for the purpose. Next, we
consider approaches to the analysis of the lattice

 by way of a certain kind of EDFs.

5.ANALYSIS OF THE LATTICE  
USING FUNCTIONSС  BASED

ON SUPPORT CHAINS

Definitions 2–4 significantly extend the formalism
of lattice estimates (Definition 1) by allowing (1) to
project into the corresponding EDF lattice by
means of a certain pre-selected (“support”) chain, (2)
to measure distances between these EDFs, and (3) to
introduce a new approach to the lattice estimates
(Definition 1). In particular, a chain corresponding to
a tth numerical target variable can be selected as a sup-
port chain.

Theorem 1. Let us choose an arbitrary maximal
chain At as a “support” for further constructions. Under
the condition of regularity of sets in /Q, each element
of L(T( )) corresponds to an empirical distribution
function from a set of homogeneous EDFs. Proof. If the
regularity condition for /Q is satisfied, the lattice

is Boolean (Theorem 3 in [7]). The chains in
 correspond to particular numerical feature

descriptions such that the arbitrary (maximal) chain At
in  can be represented in the form At =

, ,  =

 where  is a strictly
monotone sequence of numbers. The value of func-
tion  (including uncertainty) computable for any
object in  is  for every lattice atom

, the height of the atom is by definition 1
(h[{q}] ≡ |{q}| ≡ 1)). Since the lattice is Boolean, each
of its elements is unique and can be represented as a
combination of atoms. Accordingly, any element of
the lattice  is uniquely associated to the set
of values of the t-th feature  = { , } com-
puted for all lattice atoms included in the element .
By applying the operator  to the set , we
obtain the EDF  for arbitrary . If the regularity
condition for /Q is satisfied, the lattice  is
uniquely associated to the lattice formed by the
numerical sets  for each element of which the
function  is computable. All these EDFs are
homogeneous in construction since they are formed
over the same set . The theorem is proved.
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So, given the support chain At (i.e., a support

numerical feature with the domain of values ), the
set of numbers , the numerical function

, one variable   nontrivially
defined for each set , and a number of
functionals including , are thus associated
with the element . Accordingly, the set

, EDF , and the functionals like 
can be used to determine estimates in the lattice

 based of the selected support chain. In addi-
tion, it becomes possible to introduce metric functions
of the distance between functions  by methods
of functional analysis.

6. ESTIMATES IN THE LATTICE  
BASED ON THE SET  USING 
THE CONCEPT OF MEASURE

Using Theorem 1, isotonic estimates based on the
sets  are generated by functionals of the form

 such that yO is satisfied with arbitrary
 for  and  and cI,

  is satisfied for . Some of the
most obvious functionals are various definitions of
the measure of a set, which can be used, in fact, as lat-
tice estimates [6, 7].

We point out the essential similarity between the
concept of the estimate in lattice theory and the concept
of measure in the functional analysis. Just like the lattice
estimate, the measure is positively defined, the measure
of an empty set is zero, and the measure of intersection
of non-overlapping sets is equal to the sum of the mea-
sures of these sets. The estimate condition imposes an
additional requirement that if sets intersect, the esti-
mate of their union is equal to the sum of the measures
of the sets minus the estimate of their intersection.
Thus, any lattice estimate is a measure, but not every
measure could be an estimate. In functional analysis,
measures can be introduced in various ways, in particu-
lar, using discrete weights [2] which can be used to pro-
duce new types of the lattice estimates.

Definition 5. Let weights  be associ-

ated to the real axis points  = , , …, , …,
, , . Then a measure with discrete weight

computable for an arbitrary set  is defined as
 = .

There can be selected as weights in Definition 5:
(1) ranges of values from  ( , ,
etc.), (2) differences of EDF values (
–  etc.), (3) weights tuned according to
a particular algorithm for solving the problem of cor-
relation of metrics, etc. From this clearly follows

tI
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b b 1t tλ
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− λ
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+
Α

b 1t tcdf(λ , ( ))X
Α
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Theorem 2. The measure  with discrete weight is a
lattice estimate. The statement follows from the con-
sideration of overlapping and non-overlapping sets

 and  and from the satisfiability of cE from
Definition 1.

Corollary 1. The integral of a summable function
using a measure with discrete weight is computed as

 = .

Corollary 2. The scalar product of summable func-
tions f(λ) and g(λ) based on a measure with discrete
weight is computed as  = .

Corollary 3. The Kolmogorov “charge” functional
defined on the set of numbers A using summable f(λ) as
Ф(А) =  is also a measure. When using a
measure with discrete weights, Ф(А) =

 (Corollary 1).

Corollary 4.The Kolmogorov charge Ф( ) is an
isotonic estimate on the lattice  at positive defi-
niteness f(λ).The overlap of the area under an arbitrary
one-dimensional f in the case of sets  and  is
equal to Ф(   ), which is equal to Ф(  

) and is equal to the sum of the areas of Ф( ),
Ф( ) minus the area of the union of sets (which
corresponds to the satisfiability of cE in Definition 1).
The estimate of Ф is isotonic at f(λ)  0.

Corollary 5. If the frequencies of occurrence of values
from  are selected as a measure with discrete weight (for
example, the difference form of EDF) and f(λ) = λ, then the
Kolmogorov charge Φ( ) corresponds to the mathemat-
ical expectation of the t-th value on the set .

Corollary 6. In the case of selecting the measure as in
Corollary 5, the selection of any other function f except
for f(λ) = λ will correspond to preferential selection of
some values  in the calculation of the charge Φ,
i.e., the selection of a class of objects  according to
the values of .

It is obvious from Theorem 2 and its corollaries
that the introduction of the functional Φ allows us to
estimate in a more f lexible way the contribution of
each value of the target variable  to the lattice esti-
mate value. After all, not only discrete weights  of
values  are used in Ф(А), but also the weight func-
tion f(λ) common for all values.

7. PROSPECTS OF USING METRIC ANALYSIS 
OF LATTICES WITHOUT USING 

THE CONCEPT OF THE LATTICE ESTIMATE

Lattice terms  give a scalar estimate of
each element of the corresponding lattice L allowing
to compare the elements of L among themselves (if the
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conditions cE and cI of the Definition 1 are satis-
fiable). Clearly, the association to an arbitrary element
u of the lattice  of a function  (repre-
sented as a vector ) is a much more complex
“estimating” description of the set u than any particu-
lar scalar estimate [u]. This chain of reasoning points
out two directions for further development of formal-
ism: (1) the introduction of certain functionals that
allow to reduce a more complex description in the
form  to scalar estimates and (2) the develop-
ment of new mathematical tools for lattice analysis,
where functions of the form  are applied instead
of the lattice estimates.

The first direction is partly covered by the results of
Theorem 2 with corollaries. The second direction is of
interest in that it allows a researcher to introduce met-
ric distance functions without using the construction

 –  and simply based on the above-
described functional analysis approaches. For exam-
ple, it was shown earlier [6] that the maximum Kolm-
ogorov deviation [2] is a metric on the space of homo-
geneous EDFs , . The metric
properties of other distances on the space of homoge-
neous functions  can be illustrated in a simi-
lar manner.

Thus, within the scope of the proposed approach,
the precedent relations between the sets { }
and  is modeled as corresponding distance
arrays generated by a particular metric

, m = 1, …, m0. For practical
application of the formalism, it is necessary to formu-
late approaches to the study of the  properties, ways
of estimating the relevance of functions with respect to
the problems to be solved, and methods for generating
and selecting synthetic features based on . The paper
presents the results of experimental tests of topological
data analysis algorithms on pharmacoinformatics prob-
lems (numerous chemokinomic datasets).

8. ON THE STUDY OF PROPERTIES
OF DISTANCE FUNCTIONS 

The working hypothesis of this study is that
semiempirical distance functionals on sets, vectors,
and functions can be used to generate synthetic fea-
tures { } that are more “informative” than the
original features  [1]. The metric properties of
the distance functions  can be investigated analyti-
cally or combinatorially using metric axioms [5, 6, 10].
We introduce the concept of a generalized estimated
distance function in topological recognition theory to
analyze the properties of these functionals,

Definition 6. We call the “generalized distance esti-
mation function” (or “generalized distance estimator”) a

L(T( ))X φ̂ ( )t uΓ
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v
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construction of the form  =  –
 where f, g are functions monotoniс in appro-

priate parts of the real axis and  is an isotonic
estimate for which the estimation condition (cE:

 +  =  + ) and isotonic-

ity condition (cI:  ⇒ ) are sat-

isfied. Recall that  i.e., the height of the lattice
element, is the simplest functional for which yO and yI
are satisfied.

Theorem 3. The distance function  is a generalized
distance estimator if and only if  = 
and the terms from  in the formula for  are a
composition of the monotone function and of the isotonic
estimate. The need follows from  =

 and  =  when
substituting  and  for a and b in Definition
6. The equivalence of  and  indi-
cates that the expression to compute includes term
functionals containing the expressions  and 
interchangeable with a and b, i.e., terms of the form

 and . By the condition of the theo-
rem, these terms include a monotone function from
the isotonic estimate, i.e.,  is monotone. Since  is a
distance function, the  terms cannot be part of the
expression for  as a product, sum, ratio, power or
sum, but only as a difference, i.e.,  =

, which implies sufficiency.
The theorem is proved.

Corollary 1. For the generalized estimator 
 : ,  =

 · .

Corollary 2. Select the “support” set 
and the generalized estimator . At 

 =  =  is an isotonic estimate.
It follows from that any linear combination of isotonic
estimates is an isotonic estimate provided it is posi-
tively definite (Theorem 2). It is also checked by direct
substitution  in cE and cI.

Corollary 3. Distances of Frechet–Nikodym, Aman,
Rand/Schekanovsky, Sokal-Sneath (variants 1, 2 and
3), Russell-Rao, Roger-Tanimoto, Feith, Tversky and
Yulee are generalized distance estimators. The state-
ment is verified by analytical checking of the theorem
condition from the formulas of distance data (see defi-
nitions on p. 261 of the referenceguide [1]).

Corollary 4. The distances of Simpson, Brown-Blan-
quet, Underberg (Sokal-Snice variant 4), and Gower
(variant 2) are not generalized distance estimators.

The theorem 3 with corollaries provides analytical
and combinatorial tools for examining properties of
semiempirical distance functions. If the analytic
expression for a given semiempirical is simple
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enough, it is easy to verify the fulfillment of the theo-
rem’s condition. If the given semiempirical is a gener-
alized estimation distance function, corresponding
analytical expressions for functions f, g can be
obtained. For example, it is easy to show using the
statement of Theorem 3 that the Sokal-Sneath-2 dis-
tance  = 1 –  is a gener-
alized estimation distance with  =

 and  (Corollary 3).
But if analytical conclusions are impossible for

some reason (high complexity of studied  or the
absence of the distance function in analytical form),
the properties of  as a generalized estimator can be
studied on subsets  of the lattice by comput-
ing the values of the functional  (Corollary 1).
The methods of selecting the set  may vary involving
subsets of chains, representative coverages of the lat-
tice, etc. Corollary 2 makes it possible to generate new,
previously unexplored functions of the estimates 
on the basis of the support set  and the
semiempirical  for which the condition of the theo-
rem is satisfied.

9. ON WAYS TO ASSESS THE RELEVANCE
OF THE METRICS  WITH RESPECT

TO THE CLASSIFICATION/PREDICTION 
TASK

The bijection between the set of precedents Q and
the set of initial descriptions of objects , which exists
under Zhuravlev’s regularity condition ( , x =
D–1(D(x)), guarantees the unambiguous correspon-
dence of the descriptions of  and . Thus, it
becomes possible to consider precedent relations
defined on Q in terms of the sets { } and

 using distances  on subsets of the set .
Let a target class of objects be given by means of the

α-th value of the t-th variable, , t = n + 1, …, n
+ l as  = . In the case of a numerical variable,
each of the elements  of the chain At can be taken
as . Since  is Boolean, the complement of
the set ,  =  is uniquely defined. Thus,
the selection the class  gives rise to the classification
problem / . Recall that any numerical variable pre-
diction problem can be reduced to a sequence of cor-
rectly solvable problems, /  [10].

Let a subset of features, , and an element
of the lattice  be given. Define the func-
tion  = { , }. Com-
pute sets of distances,  and 
for given , ,  and  for . We introduce for sim-
plicity the notation  =  and

ρ
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 = . In addition, a set of dis-
tances,  = {  = ,

, , }, considered also as a
metric configuration ,  =

, is defined for each .

Based on the sets of distances,  and ,
relevance estimates of each  can be introduced as a
means of generating synthetic features that are more
informative in a sense than the initial . The metric

 such that minimizes distances in the list of 
and maximizes distances (i.e., “approximates” objects
to their classes) in the list of  for all  is
more relevant or “informative” with respect to the task

/ . Two interrelated areas for further research stand
out there: (1) to find subsets  of “more informative”
features for a fixed  and (2) to tune/select  when
the subset of feature is fixed.

For , we define the operation of merg-
ing lists of distances, ,  =

; denote  = ,

 = ; compute the setsof distances,
, ; and form the corresponding

EDFs, ) and , defined in
construction on the segment [0…1].

We introduce the distance functional
 (for example, maximum Kolmog-

orov deviation  = ; a
signed deviation D; von Mises, Renyi metrics; engi-
neering metrics, metrics of Chebyshev, Stepanov etc.)
on the space of homogeneous monotonically increas-
ing functions  = ,

. The selection of  makes
possible setting and solution of a number of problems
of topological data analysis including:

1) quantitative relevance estimates of  by com-
puting distances ( , ) for
different  (in the case of the numerical t-th variable,
estimates are computed for each ,

);

2) formal formulation of optimization problems to
increase the separation of classes, /  by tuning 
and/or selecting  (for example,

, , adjoint problem

, , or problem

 → min &  → max);
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3) defining  metrics on the object space [5, 6, 11]
(for example, in the form of ( ,

)), ( , )) etc.;
4) estimation of metric closeness to the metric of

the section by classes / ;
5) formulation of the criteria of solvability/regular-

ity of the problem /  and of correctness/complete-
ness of the respective algorithm models [6];

6) estimates of compactness of classes ,  [7–9].

10. ON THE WAYS TO GENERATE 
AND SELECT SYNTHETIC FEATURES BASED 

ON DISTANCE FUNCTIONS

The sets of distances, , ) and
, as well as individual distances

, are used not only to assess the rele-
vance of the metric distance  with respect to / , but
also for the formation of synthetic numerical features

 of the object , k′ = n + l + 1, …, n + l + ns.

The value of the synthetic feature  depends
on the selection of , of classes  and  and on the
way it is computed including: (1) ,
(2) , (3)  – , (4) 1
– , (5) values of EDF  for dif-
ferent x (e.g., corresponding to percentiles

), (6) values of  for different x,
(7), and frequency forms of these EDFs

 –  and
 – , where  is the

selected step value.
In addition,  can be defined for the t-th numeri-

cal variable as  or as ; if  = ,
then class  can be used instead ; the
classes / of the t-th variable can be defined using
partitions into different percentiles (which are defined
as a subsample of values of ), etc.

Thus, the proposed schemes generate a great num-
ber of synthetic features  (10∙n or more with n
being initial features), which makes it necessary to
introduce feature selection procedures. The target
variable  is numerical and the generated features

 are also numerical. There are several different
approaches in applied mathematics for this case to
estimate the relationship  and .

Correlation estimates (correlation coefficient, cor-
relation metrics) are used for linear regularities. The
disadvantage of this approach is rare occurrence of lin-
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earity in real recognition tasks. One-dimensional
approximation can be applied to nonlinear regularities
with quality assessment (spline and more complex
polynomials, formulas based on Fourier decomposi-
tion, etc.). This approach is limited by the number of
approximation formulas that can be used.

The apparatus of probability theory/mathematical
statistics provides a much more universal toolkit for
establishing relationships between tested numerical
variables x and y (tests for dependence/independence
of variables), including those based on “mutual infor-
mation” and other concepts of the Kolmogorov
school [4].

The most fundamental and practical appear to be
testing the relationship between two variables on the
basis of the “null hypothesis” of their independence.
Suppose there are pairs of tested values of x and y, (xi,
yi), i = 1, …, n(x,y), EDF.  characterizes the
joint distribution of x and y while EDF  and 
are individual distributions of variables. The EDF cor-
responding to the null hypothesis (independence of x
and y) is defined in an obvious way as .

In order to evaluate differences between 
and , it is necessary to introduce the dis-
tance between these functions (so-called “statistics”)
and to evaluate the significance of differences by
means of some statistical test. Functions  adapted
for the 2D case, for example, the maximum deviation
D( , ) =  –

 can be used as the distance and a Kolm-
ogorov-Smirnov functional, PKS (D( ),
n(x,y)) as the statistical test. Then 1 – PKS characterizes
the “informativeness” of x relative to y.

A more universal approach to evaluating the signif-
icance of differences between  and 
is to compute directly the selected statistic  on sets of
pairs of values (xi, yi) yielded by a random number
generator within a cross-validation design similar to
bootstrap testing.

Suppose the operator  sampling a set , forms a
collection of subsets (samples)  =

 |  and the random proce-
dure is the used random number generator. It is
assumed for each sample  that n(x,y) =  and the
random values of x and y are used to compute the set
of values of the selected statistic,  forming the set of
numbers rnd( , ) = { ( , ,

,  = random, j = 1, …, | |), i = 1, …, | |}.

Then for all , the value of P( , , a, k′, t) = 1

– ( ( ,

)| )rnd ( , ) is the statisti-
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cal significance of associations between the variables
 and according to the statistics on the sample, and

the value 1 – P(df, , a, k′, t) evaluates the “extent”
of the given association by numbers over the range of
[0…1].

With this method of evaluating the association 1 –
P( , , a, k′, t), the problem of selecting informa-
tive features is solved by means of the so-called B-
algorithm originally developed for building optimal
vocabularies of the final information (as denoted by
the letter “B”) [5]. This algorithm based on the Zhu-
ravlev’s solvability criterion and can select sets of final
informations from maximum partial coverage at a
minimum of coverage elements. If we replace the
computation of the size of intersection of sets by esti-
mates of the association 1 – P( , , a, k′, t), then
the B-algorithm will choose the minimum of features
with maximum “informativeness”, which ensure the
solvability of the problem (the most informative fea-
tures, see Theorems 1, 7, 8 in [5]).

Thus, more informative synthetic features 
of objects from  are synthesized within the for-
malism being developed in 5 steps as follows: (1)
define a set of initial (generally “low-informative”)
features  and a target variable , (2) intro-
duce a collection of metrics , estimate their rele-
vance ( , ) for each class

 of values of the t-th variable and select the most rel-
evant , (3) generate synthetic features  via
each of the selected , (4) select by calculating 1 –
P( , , a, k′, t) and applying the B-algorithm the
minimum number of features of maximum “informa-
tiveness”, (5) apply the algorithm for predicting the
target variable (which in fact is the Zhuravlev-Ruda-
kov corrector).

11. EXPERIMENTAL TESTING

This algorithm of topological data analysis was
tried on a set of pharmacoinformatics datasets related
to chemokinomic assays aimed at obtaining quantita-
tive estimates of the inhibition of human proteome
kinases with advanced drugs. This set of tasks is related
to modeling ligand-receptor interactions in which
interaction constant values of the j-th substance,

( j), are predicted based on the chemical struc-
ture of molecules (chemographs G( j)).The formalism
allows to predict “directly” not only the values of

( j), but also individual response values, Еj(Сi),

such that the target variable  was defined as a
numerical value of the predicted quantity (e.g., the
constant EC50( ) for the inhibition of this type of
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kinase by a molecule corresponding to the chemo-
graph ) or as Ej(Ci).

The developed algorithms were tested on a data
sample from ProteomicsDB (https://www.proteom-
icsdb.org) containing data on Ci (Ci = 1, 3, 10, 100,
1000, 3000, 30000 nmol/L), Ej(Ci) and ( j) for
300 enzyme kinases (the so-called “human kinome”,
a part of proteome) and 250 drug molecules from the
ATX list (in total, more than 2400 independent data
samples on kinase activity measurements). The practi-
cal importance of kinome data analysis is due to the
fact that many kinases are target proteins of well-
known and advanced drugs.

A set of chemoinvariants over the alphabet of ele-
ment labels was used in predicting ( j) and Ej(Ci)
as the set of initial informations  at a given concen-
tration Ci based on the chemograph . The initial fea-
ture descriptions for the chemograph  ( being
the set of all chemographs based on the alphabet of
labels Y) were generated as chemoinvariants based on
the set of χ chains of length (X) and the set of χ
nodes,  [11, 12]. Briefly, suppose there is a set of
subgraphs (χ-chains and χ-nodes)

. Define the operator of the
presence of a subgraph  in the chemograph X as a
Boolean variable,  = ( ),  =

(X)  . Then the result of successive application
of the operator  to an arbitrary set  is a Boolean vector,

 = , , …, . For the given set
of chemographs, the set of initial informations is  =

. The value m = 5 corre-
sponding to optimal results of combinatorial regularity
testing according to Zhuravlev [8, 9] was used.

Two approaches to synthetic feature generation
were used including (1) the previously tested method
of support functions (the basics of the method are set
forth in [10]) and the metric approach proposed in this
paper.

When applying the method of support functions, the
algorithms  were constructed in the form
of compositions of nested corrective functions of the
lower level (i.e., of the generation of synthetic fea-
tures) for a fixed number of models nmod:  =

g(f1( ), …, fl( ), …), l = 1, …, nmod,
where g is the external corrective function, fl is the
internal corrective functions (“models” of generation
of synthetic numerical features), and nmod is their

number.  is summed over the components of
the vector , k = 1, …, . Linear, nonlinear,
monotone and nonmonotone corrector functions of g
and fl (more than 20 versions of monotonic and non-
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monotonic transformations including those described
in [6]). The parameter vectors were tuned by multistart
stochastic optimization within the cross-validation
design of the computational experiment [10].

When using the “metric approach” proposed in this
paper, distance functions on sets, vectors and EDF (65
functions in total from the reference guide [1]) were
applied as . The vectors for the elements of L(T( )
were formed from the estimates of , , dα [12] for
each value of the t-th variable in the class  (quartiles
of  values were used as ). The relevance of  was
estimated by the formula ( ,

 for each  using maximum deviation as
. Synthetic features of  were generated by all

the above methods ( , EDF features,
etc.) and the selection was performed by the B-algo-
rithm using 1 – P( , , a, k′, t) values. Just like with
the support function method, neural networks with sev-
eral layers (from 2 to 10) with a softmax activation func-
tion, polynomials of various designs (more than 20 for-
mulas, including quasi-polynomial models with ele-
mentary functions), and additionally “random forests”
of decision trees were used as prediction algorithms.

Consider correlation coefficient values in training
and in control as in [6, 12] for a tentative estimate of
generalization ability. The sampling operator  was
implemented as a tenfold cross-validation with each
object sample divided into 80% (training) and 20%
(control). Preliminary experiments showed that the
best results of predicting ( j) were obtained when
1) the effects of hydrogen atoms were neglected (i.e.,
simpler Y alphabets were used), and 2) a linear recog-
nition operator was used in combination with a non-

ρm X
+
αv −

αv
αс

Γt αс ρm

fd φ ϑˆ( ) ( , p)x mα αс
φ ϑˆ( ) ( , p)x mα αс αс

fd 'Γ ( )k ix
−Γ Γ1ρ ( , ( ( ))m k k ixαс

fd ζ̂X

ζ̂

50EC

monotonic corrector (neural networks, decision trees,
polynomial functions, etc.). The experimental results
are summarized in Table 1.

Table 1. Rank correlation between experimental
and calculated values of ( j) for 300 human
kinases under different computational experimental
conditions. r, rank correlation coefficient in training;
rc is in control; SD, standard deviation in training,
SDc is in control. Experiments were conducted in a
cross-validation design (10 partitions in a case-control
ratio of 6:1). A 2-layer network with a softmax activa-
tion function was used as a “neural network”. The
search for optimal parameter values was carried out
with multistart stochastic optimization. The best
methods are highlighted in bold.

In the case of the support function method, the
best result was produced using the neural network g
tuned according to both rank criteria (rc = 0.86 ± 0.20
with a small difference from r in training). The best
result of the new “metric” approach with a polynomial
corrector (rc = 0.90 ± 0.23) slightly outperformed the
best result of the support function method. The poly-
nomial formulas that most often produced the best
results were 1st or 2nd degree polynomials with the
products of first-degree variables, 5th degree polyno-
mials, quasi-polynomials of 5th degree with sigmoids,
and Fourier polynomials of 3rd degree.

It is interesting to note that neural network correc-
tors regardless of their configurations performed
extremely poorly in the case of the “metric” synthetic
features  (r = 0.45 ± 0.22, rc = 0.22 ± 0.21)
while “random forest” resulted in a significant over-
training (Table 1).

The analysis of the synthetic features 
included in the best polynomial models showed that

50EC

Γ '( )k ix

Γ '( )k ix

Table 1. Rank correlations between experimental and calculated values of EC50 and of other chemokinomic assay values. r,
rank correlation coefficient in training; rc is in control. r and rc were averaged on 2400 samples of chemokinomic data.

Experiment r rс SD SDс

Ordinary regression, g is linear 0.67 ± 0.25 0.45 ± 0.26 0.24 ± 0.15 0.25 ± 0.14
Rank regression, g is linear 0.68 ± 0.23 0.48 ± 0.25 0.20 ± 0.19 0.22 ± 0.20
Ordinary regression, g is neural network 0.89 ± 0.13 0.79 ± 0.13 0.18 ± 0.12 0.13 ± 0.11
Support functions, opt.1, g is neural network 0.88 ± 0.15 0.83 ± 0.28 0.05 ± 0.03 0.05 ± 0.03
Support functions, opt.2, g is neural network 0.89 ± 0.13 0.81 ± 0.16 0.18 ± 0.17 0.17 ± 0.17
Support functions, opt.3, g is neural network 0.88 ± 0.15 0.86 ± 0.20 0.03 ± 0.02 0.04 ± 0.03

Synthetic , corrector is neural network (2 layers) 0.45 ± 0.22 0.22 ± 0.21 0.22 ± 0.2 0.25 ± 0.24

Synthetic , corrector is neural network (10 layers) 0.52 ± 0.25 0.21 ± 0.20 0.27 ± 0.22 0.33 ± 0.29

Synthetic , corrector is random forest, opt. 1 0.98 ± 0.15 0.67 ± 0.31 0.14 ± 0.11 0.25 ± 0.19

Synthetic , corrector is random forest, opt. 2 0.99 ± 0.14 0.71 ± 0.35 0.04 ± 0.02 0.15 ± 0.15

Synthetic , polynomial correctors, opt. 1 0.93 ± 0.11 0.90 ± 0.23 0.08 ± 0.06 0.08 ± 0.08

Synthetic , polynomial correctors, opt. 2 0.95 ± 0.08 0.86 ± 0.27 0.06 ± 0.05 0.10 ± 0.09
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features generated using EDF based on support chains
(Theorem 1) were the most frequent among more
informative features according to the estimate of 1 –
P( , , a, k′, t) and the initial features  and
features based on individual distances

 were among the least informative
ones. The functions  most frequently generating
informative  on the EDF space were maximum
Kolmogorov deviation, “oblique” distance, and Lp,
Renyi, χ2, von Mises, and the engineering metrics [1].
These 7 varieties of  generated on average across all
data samples more than 50% of the most informative
features  selected by the B-algorithm.

12. CONCLUSIONS

Various functionals that estimate distances
between sets, vectors, or functions are ubiquitous in
applied mathematics. This paper shows that in estab-
lishing metric properties of these functionals the tool-
box of the formalism of topological recognition theory
can be significantly enriched with non-trivial metrics
based on empirical and semiempirical distance func-
tions. The approach to the generation of informative
synthetic features proposed in the paper implies suc-
cessive transformations of object descriptions includ-
ing (1) an initial set of feature values , (2) a set of
corresponding lattice elements , (3) a set of
distances (measured by means of ) between lattice
elements corresponding to classes and features, (4) a
set of EDF distances measured with , and, finally,
(5) a set of synthetic features  of the object. The
use of multiple metrics at the stage of feature genera-
tion allows us to consider the developed formalism as
a variant of developing the ideology of ECA (estimates
calculating algorithms) of the scientific school of
Y. I. Zhuravlev and K.V. Rudakov. Experimental test-
ing of the proposed approach on 2400 homogeneous
problems of pharmacoinformatics made it possible to
enhance the accuracy and generalization ability of the
algorithms compared to the best available solutions.
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