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ABSTRACT Development of efficient methods of the cellular image processing is an important avenue for
practical application of modern artificial intelligence techniques. In particular, practical hematology requires
automatic classification of images with or without leukemic (blast) cells in peripheral blood smears. This
paper presents a new approach to the problem of classification of such cellular images based on graph
theory, XGBoost algorithm and convolutional neural networks (CNN). Firstly, each image is transformed
into a weighted graph using gradient of intensity. Secondly, a number of graph invariants are computed
thus producing a set of synthetic features that is used to train machine learning model based on XGBoost.
Combining XGBoost with CNN further increases the accuracy of leukemic cell classification. Sensitivity
(TPR) and Specifity (TNR) of the XGBoost-based model were 95% and 97% accordingly; ResNet-50 model
showed TPR of 95% and TNR of 98%. Combined use of the XGBoost-based and the ResNet-50 models
demonstrated TPR of 99% and TNR of 99%.

INDEX TERMS Adjacency matrices, gradient boosting, graph invariants, image classification, neural
networks, triangle-free graphs, weighted graphs.

I. INTRODUCTION
Automation of the processing of cellular images requires a
number of image analysis tasks had to be solved. In particular,
it is necessary to (1) detect presence of a particular cell type
in the image, (2) distinguish between different types of cells
in the images, (3) count the numbers of cells of each type and
(4) highlight the relevant structures inside the cells.

This work presents a development of image analysis
methods applied to classification of blood smear images
obtained from patients with acute lymphoblastic leukemia
(ALL) with the purpose of detecting leukemic (blast) cells.
The practical importance of the methods proposed is obvious
since smear analysis is performed only by trained specialists
highly qualified in cell morphology.

ALL is a disease of the blood system that results from
malignant transformation of B/T lymphocyte precursors [1].
It is the most common leukemia in the pediatric population,
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accounting for up to 80% of cases in this group (compared to
only 20% in adults). Early and accurate diagnosis of ALL is
important for successful therapy [2]. Expert analysis of bone
marrow smear images is necessary to establish a diagnosis of
ALL. A characteristic feature of the images is the presence
of so called ‘‘blast cells,’’ a morphologically distinct group
of cells including the earliest hematopoietic progenitor cells.
Typically, these blast cells comprise 1%- 2% of the cells in
bone marrow smears [3]. The malignant cells remain poorly
differentiated, but carry markers of lymphoid and/or myeloid
cells. Previously, it was believed that malignant cells, while
proliferating, displaced normal hematopoietic cells from the
bone marrow. Later, it was shown that the number of normal
hematopoietic stem cells does not decrease, but they undergo
a blockade of differentiation, resulting in the development
of cytopenia [4]. Peripheral blood smear may contain more
than 20% blast cells [5], [6].
The task of classifying images containing blast cells

is complicated by the fact that three different types of
lymphoblasts are found in bone marrow biopsy specimens
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from patients with ALL: (1) small size, high nuclear-
cytoplasmic ratio, rounded nuclei, delicate chromatin struc-
ture and poorly distinguishable nucleoli; (2) medium-sized
with varied nucleus shape, delicate chromatin structure;
(3) medium to large size with oval or rounded nucleus shape,
delicate chromatin structure, one or more well-defined nucle-
oli, sharp basophilia and vacuolization of the cytoplasm [7].
A characteristic feature of the blast cells is their difference in
size from lymphocytes which, nevertheless, varies widely [8].
These features of images containing blast cells increase the
variability of image data, making it difficult to create effective
classification algorithms.

This study proposes an approach to classify the images
containing the leukemic cells by transforming the images into
weighted triangle-free graphs in which the image gradient
magnitudes are used as edge weights. The weighted graphs
obtained from the images are used to compute several graph
invariants which form a feature set that is subsequently
used to train a machine-learning ensemble based on the
XGBoost model architecture [9]. We also explored how the
complementing the graph-based model with the ResNet-50
model [10] can improve the results of classification (in
particular, on low-resolution images). Low resolution of the
blood smear images represents an actual problem for neural
networks of complex architectures and also has important
practical ramifications since it is not always possible to obtain
biomedical images of high resolution.

The remainder of this paper is organized as follows:
In Section II we describe similar approaches and publica-
tions related to the subject of the problem to be solved.
In Section III, we describe the dataset used in the study
and the methods developed for preprocessing the data.
In Section IV we describe the algorithms proposed, their
implementations and overall experimental setup. In SectionV
we present the results of the algorithms application on
real data, compare performance of our algorithms with
the performance of the state-of-the-art neural networks.
In Section VI we compare our results with the results of
earlier studies that used the ALL_IDB1 dataset. Section VII
presents finalizing remarks and highlights some ideas for
future studies.

II. RELATED WORK
Several attempts have been made to apply various automated
image processing methods to solve the problem of detecting
leukemic cells in images of blood smears. In particular,
paper [11] presents the idea of applying a CNN to classify
images from an ALL-related dataset. The authors also pro-
posed a valuable data augmentation approach and described
implementation peculiarities of their CNN architecture. The
shortcomings of the study are the lack of technical detail and
relatively small number of computational experiments.

Closely related to this paper are the works [12], [13] in
which the authors suggested the use of more sophisticated
approaches based on segmentation combined with CNN and
other types of network architectures. The merits of these

studies include a large number of tested algorithms (which
were based on the application of neural networks of different
architectures). A major disadvantage of both of these studies
is insufficient description of the solutions proposed, including
the approaches to the problem of training neural algorithms
on small amounts of image data.

In [14], the authors used a combination (ensemble)
of complex neural networks (VGG19, MobileNet, and
DenseNet) to solve somewhat similar problem of biomedical
image classification (breast cancer biopsy images) over a
small set of data without using methods of graph theory. The
advantages include an effective combination of several neural
networks of complex architecture to perform classification
while disadvantages are related to the fact that such combi-
nations produce excessive complexity of the algorithms.

The main advantage of the paper [15] is to extract original
image features called ‘‘Energy,’’ ‘‘Entropy,’’ ‘‘Shannon
Entropy,’’ ‘‘Log Energy Entropy’’, Mean, Variance,
Correlation and to use these synthetic features to predict
the image classes. The most prominent disadvantage of this
approach is relatively low classification accuracy of the
algorithms tested.

In [16] the authors used a gradient calculation method
based on weighted graphs combined with a Random Forest
algorithm. Paper shows that the image gradients constructed
with the method proposed can be used as an alternative
to the edge maps methods and described an interesting
approach of training Random Forest algorithm on gradient-
based information. Limitation of the study is due to the fact
that it focuses only on the image segmentation tasks not
covering classification use cases. Also, it’s worth mentioning
that the algorithm proposed by authors was not tested on
the real-world datasets. Other approaches of this kind were
proposed in [17] and [18].

Here, we would also like to discuss the specifics of the
papers that were using the same ALL_IDB1 dataset [19]
for training and validation of the models developed. In the
works [11], [20], and [21], different variants of CNNs were
used to detect images with leukemic cells. They achieved
accuracies of 96.6%, 98.3% and 96.5%, respectively. The
authors of [13] used different set of models including
the residual-based neural networks (such as ResNet-50);
the accuracy reported was 96.2%. Several other works used
different variations of SVM [22], [23], and [24] with reported
accuracy of 93.7%, 98.1% and 94%, respectively. Both
studies [25] and [26] used variations of the YOLO algorithm
for the task of blast cell detection with reported accuracy
of 97.2% and 96.1%, respectively. In [27], authors used
4-moment statistical features and several neural networks for
building and training the model to achieve 97.1% accuracy
on the same ALL_IDB1 dataset.

III. DATA AND PREPROCESSING
The ALL_IDB1 dataset used in this study consisted
of 108 microscopic images representing approximately
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39000 cells. Images were taken at various magnifications
(x300-x500). An example of an image is presented in Fig. 1.

FIGURE 1. Example of a microscopic blood image. Lymphocytes (purple)
and erythrocytes (most of the cells in the figure) are shown.

Two approaches, raw image processing and preprocessing
of the tabular data, were used to prepare the data for
training ourmodels. Data augmentation (increasing the image
sample using simple transformations such as image rotation,
stretching, changing image brightness and adding reflections)
was applied in order to combat overfitting [28]. For this
purpose three basic transformations were applied to the
original images:

• image rotation by a random number between 0 and
20 degrees;

• brightness alteration is in the range of [0.15;0.3], where
1 indicates the maximum brightness of the image;

• approximation (zooming) of the image.
For each original image from the dataset of 108 images,

additional images were generated by applying all of the three
transformations which resulted in the formation of a dataset
of 3231 images. An example of augmented image is shown
in Fig. 2.

IV. METHODS
A. GENERATING GRAPHS FROM THE IMAGE
The algorithm takes an RGB image with dimensions
H × W × D as input, where H is the height of the image
in pixels, W is the width, and D is the number of channels
(layers) in the image [29]. The elements of this array are
intensities with values ranging from 0 to 255, where 0 is the
minimum and 255 is the maximum intensity. Each pixel in the
image corresponds to a vertex of the graph. Edges of the graph
were calculated as the connections between adjacent pixels in
each layer of the image by translating an array of indices into
a 3D mesh and stacking slices of the mesh around the layers.

We demonstrate this process using an example on an
imaginary input image I with dimensions of (3, 3, 1).
We select and number the vertices from the first to the last
pixel in the image; in total, we obtain 3× 3× 1 = 9 vertices.
The edges generated by connecting adjacent pixels are shown
in Fig. 3.

FIGURE 2. Example of an augmented image. Rotation, zooming and
brightness adjustment operations were applied to the original image.

FIGURE 3. Process of forming edges inside the image pixels. Connecting
vertices ±n (in this example ±1 is used) along the x, y, z axes ensures
that there will be no triangles in the newly generated graph.

In this example, the edges were generated by considering
only the x and y directions (because z = 1), and the case
of ±1 is considered. In cases with z > 1 there is also a third
direction of edge formation (z-axis). The main stages of the
graph generation procedure are shown in Fig. 4.

FIGURE 4. Process of the graph generation: a) Input image as image pixel
intensities; b) Vertices formed based on each pixel of the input image; c)
Edge creation in x-direction, in y-direction and the overall set of edges.
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B. CALCULATING THE IMAGE GRADIENTS
The gradient of an image was calculated as the absolute
difference in intensity between every two pixels connected
by an edge [30].

gradient =| imgx1,y1,z1 − imgx2,y2,z2 | . (1)

Next, the vertex indices were computed as follows:

(xi, yi, zi) = (
⌊

Ei
ny · nz

⌋
,

⌊
Ei mod

(
ny · nz

)
nz

⌋
,Ei mod

(
ny · nz

)
mod (nz)), (2)

where Ei is the vertex index of the image edge, ny is the pixel
width of the image, nz is the number of image channels.

As a result, we obtained an adjacency matrix of a weighted
graph, in which the main diagonal contains the pixel values of
the original image and the other values in the matrix are either
the resulting gradient values or zeros. This adjacency matrix
corresponds to weighted graphs with self-loops and without
triangles. An example of such a matrix is shown in Fig. 5.

FIGURE 5. Adjacency matrix with image gradient magnitudes. The main
diagonal (marked in orange) contains pixel intensities of the original
image, while the other values are the magnitudes of the gradients.

C. TRIANGLE-FREE GRAPHS
After forming the adjacency matrix as described above, the
graphs thus obtained were triangle-free by construction [31].
The number of self-loops in such graph G equals to the
number of vertices |V |. Let AG =

{(
aij

)}
1≤i≤j≤n and A

2
G ={(

bij
)}

1≤i≤j≤n. A triangle in G exists if and only if there are

i, j, k so aij · aik · ajk = 1 [32]. If aij · aik · ajk = 1, we
have aij = 1 and bij =

∑n
l=1 ail · alj ̸= 0. In other direction,

if bij =
∑n

l=1 ail ·alj ̸= 0 and aij = 1, there are k ∈ {1, . . . , n}
such aik · ajk = 1 so we have then aij · aik · ajk = 1. The
resulting graphs obtained from the images had a diameter
equal toH+W , whereH - is the height of the image in pixels
andW - is the width of the image. These graphs had a clique
number equal to 2. As the image dimensionality increases,
the complexity of the graphs rises (an example is presented
in Fig. 6).

D. GRAPH INVARIANTS AS SYNTHETIC FEATURES
After preliminary experiments with various graph invariants
using the procedures of feature estimation and selection

FIGURE 6. Growth of graph structures formed from microscopic images
using the ±1 approach: a) 5 × 5 × 3 image; b) 10 × 10 × 3 image; c)
20 × 20 × 3 image; d) 32 × 32 × 3 image. Self-loops are not displayed.

(see the next subsection), six types of invariants formed the
final set of features: (1) Average Edge Weight, (2) Average
Degree Connectivity, (3) Degree Associativity Coefficient,
(4) Local Efficiency, (5) Average Edge Weight (across
vertices), and (6) Estrada index.

The average edge weight was calculated as the ratio of the
total weight of a graph to the number of edges in the graph.

W =

∑N
i=1 wi
|E|

. (3)

The average degree connectivity [33] is the average degree
of the nearest neighbor of a vertex with degree k . For
weighted graphs, this invariant was computed by calculating
the weighted average vertex neighbor degree for vertex i as
follows:

kwnnn,i =
1
si

∑
j∈N (i)

wijkj, (4)

where si is the weighted degree of vertex i, wij is the weight
of the edge connecting vertices i and j, and N (i) are the
neighbors of vertex i.

The degree assortativity coefficient [34] estimates the
tendency of vertices to connect with other vertices with
similar features within the graph and was computed as the
Pearson correlation coefficient between vertex degrees:

r(i, j) =

∑
i,j

(
f (i) − f̄1

) (
f (j) − f̄2

)√∑
i,j

(
f (i) − f̄1

)2√∑
i,j

(
f (j) − f̄2

)2 , (5)

where f̃1 =

∑
j f (j)
|E|

, f̃2 =

∑
i f (i)
|E|

, i, j ∈ E .

The local efficiency [35] was computed for each individual
vertex i in the graph by identifying the subgraphs to which
vertex i is directly connected. After removing vertex i from
the identified subgraph, the shortest path between all the
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vertices in the subgraph was computed. The inverse of the
shortest path from each vertex previously connected to vertex
i to every other vertex previously connected to vertex i was
then summed over all vertices, which was normalized to
consider the total possible number of links that may exist
between all vertices previously connected to i. Formally, local
efficiency calculated as

Elocal =
1

NGi
(
NGi − 1

) ∑
j,k∈Gi

1
Lj,k

, (6)

where NGi is the number of vertices in subgraphs Gi and Lj,k
is the average distance (number of steps) between vertices i
and j in the graph.

The average edge weight (across vertices) was defined as
the ratio of the sum of the edge weights to the number of
vertices in a given graph.

v =

∑n
i=1 wi
|V |

. (7)

The Estrada index is the invariant that is used in chemical
graph theory for topological operations with molecular
structures [36] and was computed as follows:

EE(G) =

n∑
j=1

eλj, (8)

where λ1, . . . , λn are eigenvalues of the corresponding
adjacency matrix A of the graph G.

During the study, other invariants were also tested.
However, they were not included in the final set of synthetic
features because of insignificance of their effects on the
performance of the algorithm. Among them, we can mention
such invariants as the Pagerank [36], Wiener Index [37],
Edge Connectivity [38], Node Connectivity [39], Edge
Betweenness Centrality [40], and Length of the Sparsest
Cut [41].

After converting the augmented image set into graph
representations and obtaining the graph-based feature set F ,
the feature values were standardized to a set of values from
a distribution with zero mean and standard deviation equal
to 1 [42].

E. APPROACHES TO FEATURE SELECTION
For feature selection, we used the Kolmogorov-Smirnov test
statistic (Dn,m), feature importances from theXGBoostmodel
(weight importances), and Shapley Values (mean SHAP
values).
Dn,m can be used to estimate the significance of the

differences between two discretely presented distributions of
the variable, with the null hypothesis that samples are drawn
from the same distribution [43]. Let Fn(x) be an empirical
distribution function of a variable on X = (X1, . . . ,Xn) .

Then

Fn(x) =
1
n

n∑
i=1

IXi⩽n, (9)

where IXi defined as following [44]:

IXi⩽x =

{
1, Xi ⩽ x
0, Xi > x

. (10)

Statistics for the function Fn(x) is defined as the
Kolmogorov’s maximal deviance:

Dn = sup
x∈R

|Fn(x) − F(x)| , (11)

In case of two-sample statistics, the equation transforms
into the following:

Dn,m = sup
x

∣∣F1,n(x) − F2,m(x)
∣∣ . (12)

We used the two-sample statistic Dn,m to identify features
significant for the model (comparing the distributions of each
feature to the target class variable) and to determine the
degree of confidence in the significance of the feature based
on the value of the statistic [45].

Apart fromDn,m,we used the feature importances obtained
within the XGBoost model. Specifically, we tested three
estimates of feature importances: ‘‘weight’’, ‘‘gain’’ and
‘‘coverage’’.When usingweight, we calculated the number of
times a particular feature divided the data across all decision
trees in the algorithm. Gain was defined as the average
information gain of the tree splits that utilize the features.
Cover was defined as the average coverage of the tree splits
of the feature, while coverage represents the sample number
affected by the tree split [46], [47]. Preliminary experiments
showed that ‘‘weight’’ score proved to be the most accurate
for feature evaluation in our case.

To evaluate the set of graph invariants we also used SHAP
(SHapley Additive exPlanations) - a characteristic based on
the results from game theory that can be used for feature
importance calculations [48]. The SHAP of a feature was
calculated as follows:

φj(val) =

∑
S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!
p!

(val(S ∪ {j}) − val(S)), (13)

where S is a subset of the features used in the model, val - the
value function of S and p is the number of features.

valx(S) =

∫
f̂
(
x1, . . . , xp

)
dPx /∈S − EX (f̂ (X )), (14)

where valx(S) is prediction for the values in S.

F. IMPLEMENTATIONS OF XGBOOST AND CNN
ALGORITHMS
For training XGBoost model we used a set of features
obtained as the result of testing various graph invariants.
An early stopping procedure was also used in the model;
the algorithm stopped training if the loss parameter did not
decrease within five consecutive iterations. The model was
trained using 100 estimators, a learning rate of 0.1 and a
maximum depth of 3.

We have used the classical version of the pre-trained
ResNet-50 with ImageNet weights. For fine-tuning using our
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dataset, an Average Pooling layer, a fully-connected layer of
four neurons and a dropout layer were added. We have used
Binary Cross Entropy as the loss function and RMSProp as
the optimizer. The output layer used the softmax activation
function for class probability prediction. Softmax function
was compared with sigmoid function but we found no
evidence that sigmoid function outperforms softmax in terms
of evaluation metrics we used or in terms of computation
speed. The CNN was trained for 100 epochs; early stopping
was added to control overfitting. Training stopped earlier if
the loss rate on validation did not decrease for 5 consecutive
epochs.

The predictions of the two models were averaged so
that the final result was constructed based on the average
probability of the classes from the models. Consider an
example in which an algorithm produces five results: the
first model M1 gives a set of predictions p1, . . . , p5, and the
second modelM2: q1, . . . , q5, so that

5∑
i=1

pi =

5∑
i=1

qi = 1. (15)

By setting any value of weightw in the interval 0 < w < 1,
we denote the combined ensemble prediction as

ri := wpi + (1 − w)qi. (16)

Then we obtain that
5∑
i=1

ri =

5∑
i=1

(wpi + (1 − w)qi) = w
5∑
i=1

pi + (1 − w)
5∑
i=1

q1 = 1. (17)

The value of parameter w = 1/2 was considered to be the
optimal value and was further used for comparing approaches
and algorithms [49].

G. EVALUATING THE ACCURACY OF THE ALGORITHMS
The developed algorithms were evaluated by dividing the
dataset randomly in the ratio of 70% to 30% into training
and test subsets, respectively. The common functional
indicators for evaluating performance of binary classification
(Accuracy, Precision, Recall, F1-Score and Area under ROC
curve, AUC) were calculated for the evaluation of the
algorithms [50].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
, (18)

Recall =
TP

TP+ FN
, (19)

Precision =
TP

TP+ FP
, (20)

F1 − Score = 2 ·
Recall · Precision
Recall + Precision

, (21)

AUC =

∫
TPRd(FPR), (22)

where TPR =
TP

TP+FN and FPR =
TN

TN+FP .

The code was written in Python 3.10.12 (using Anaconda
of version 23.3.1).

We share all of the results and the code at https://github.
com/ds-muzalevskiy/graph-invariants-leukemia-detection.

V. EXPERIMENTS
A. OVERALL SETTING
As part of the computational experiment, we solved the
binary classification problem of detecting images with the
blast cells. First, we augmented the original ALL_IDB1
dataset and obtained a set of 3231 images. Each image
in this augmented image set was also compressed to
32 × 32 pixels. Secondly, after augmentation and rescaling
the images were subsequently used in two ways: 1) the
images were transformed into weighted graphs and graph
invariants were calculated as described in SectionIV which,
in turn, were used for training the XGBoost model; 2) the
images were directly used for training the ResNet-50 CNN
algorithm. We also evaluated and compared the results of
these twomodels (graph-invariant XGBoostmodel andCNN)
and their combined performance.

B. INVARIANTS’ SELECTION AND EVALUATION
We generated graphs by considering the connection of
adjacent pixels as of ±1, ±2 and ±3 types thus obtaining
three sets of graphs and then computing the same set of
11 invariants for the graphs in these three sets. The set of
11 invariants included the Average Edge Weight, Average
Degree Connectivity, Local Efficiency, Global Efficiency,
Degree Assortativity Coefficient, Average Neighbor Degree,
Average Edge Weight (across vertices), Estrada Index,
Wiener Index, Pagerank andDegree Centrality. Subsequently,
we calculated invariant evaluation functionals using weight
importances, mean shap values (also calculated using the
XGBoost model) and Dn,m.

1) ±1 GENERATED GRAPHS
The set of the most important invariants for the ±1 graphs
was formed by the Local Efficiency, Degree Assortativity,
Average Edge Weight, Average Edge Weight (across the
vertices), and Average Degree Connectivity. According to
the values of SHAP and Dn,m, the Estrada Index can also
be considered to be important for the model (Table 1). Low
values of Local Efficiency (Fig. 7) correlated with a higher
chance of obtaining the 0 class in the model (images without
leukemic cells). On the contrary, higher values for the Degree
Assortativity invariant were related to a higher likelihood of
the model predicting the 1 class (images with leukemic cells).
Additionally, higher values of the Average Edge Weight and
Average Edge Weight (across the vertices) are related to
0 class prediction.

2) ±2 GENERATED GRAPHS
For the ±2 generated graph invariants, the most significant
features were the Average Edge Weight (across the vertices),
Average Degree Connectivity, Degree Assortativity and
the Estrada Index. We can also notice that Global and
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TABLE 1. Results of evaluation of significance of invariants for ±1, ±2 and ±3 graphs. Abbreviations: xgb-imp is Weight Importances, shap-val is Mean
Shap Values and Dn,m is Kolmogorov-Smirnov statistics.

FIGURE 7. Estimates of the significance of the synthetic features for
±1 graph invariants.

Local Efficiencies also play a role in the overall model’s
performance. According to Table 1, Degree Assortativity
and Estrada Index have the highest impact on the model
output.

3) ±3 GENERATED GRAPHS AND THE FINAL SET OF
INVARIANTS
As n increases from 1 to 3, the graph begins to lose its
edges. This explains the differences in feature importances
for different n values (Fig. 8): for the ±3 generated graphs,
the most significant features were Local Efficiency, Degree
Assortativity, Average Edge Weight (across the vertices) and
Average Degree Connectivity (Table 1).

To form the final set of the most significant features we
took the six most important features (according to the three
functionals we used) of ±1 graph invariants and added one
of the most important features from the sets of ±2 and
±3 graph invariants. The complete list of features contained
the following features from ±1: Local Efficiency, Degree
Assortativity, Average Edge Weight, Average Edge Weight
(across the vertices), Average Degree Connectivity, Estrada
Index, Degree Assortativity from ±2 and Local Efficiency
from ±3 graphs.

FIGURE 8. Feature significance distributions based on the evaluation
methods used. a), b), c) are ±1 graph invariants; d), e), f) are ±2 graph
invariants and g), h), i) are ±3 graph invariants.

C. RESULTS OF THE IMAGE CLASSIFICATION
EXPERIMENTS
In addition to ResNet-50 and graph-invariant XGboost
models, that formed the basis of the study, a series of
experiments were conducted with a set of different boosting
algorithms for the tabular data: AdaBoost (ADA) [51],
Gradient Boosting (GB) [52], LightGBM model [53], and
NGBoost [54]. The Table 2 shows the results of standalone
graph-invariant XGBoost (GXGB), ResNet-50 (RES-50),
and the combined ensemble of the two models (COMB). The
results of the evaluation of the models are also presented in
the Figure 9.
After performing a standalone comparison of the per-

formance of the graph-invariant XGBoost and Resnet-
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FIGURE 9. Evaluation results for the Graph Invariants XGBoost and Resnet-50 models. a), b), c) are representing results of XGBoost and d), e), f) are
demonstrating Resnet-50 performance.

TABLE 2. Comparison of the Accuracy, Precision, Recall and F1-Score for
the different models used in the experiment.

50, we tested a hybrid method, an ensemble constructed
from these two models. After obtaining the augmented
dataset and dividing the data into training and test sets,
the algorithms were trained in parallel - XGBoost on the
computed graph invariants and ResNet-50 on the augmented
images. After each model made class predictions, the
probabilities were averaged and used as a final estimate of
model performance. The results of the evaluation of this
ensemble model are shown in Figure 10; the validation
curve for the graph-invariant XGBoost model is displayed
in Figure 11.

VI. DISCUSSION
In this section, we compare our proposed algorithms with the
results of algorithms applied in earlier studies which used the
same ALL_IDB1 dataset. We summarized the results of these

TABLE 3. Comparison of the model performances from the different
papers based on ALL_IDB1 dataset.

comparisons in the Table 3. We used Accuracy metric for
comparison for two reasons. Firstly, in ALL_IDB1 dataset
we operated with balanced classes, so in this case we can
use Accuracy as an evaluation metric similar to F1-Score.
Secondly, not all papers used all of the evaluation metrics
that we applied (F1-Score, Precision, Recall, TPR and FPR).
Its apparent from the data in the Table 3 that the combined
use of XGBoost and ResNet-50 might improve the quality of
the image cells classification. It is also worth noting that all
of the ALL_IDB1-based studies cited used the original (high
resolution) images (up to 2592 × 1944).
For XGBoost training in the present work we used

highly compressed images of size 32 × 32 as inputs, i.e.
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FIGURE 10. Confusion Matrices for both standalone models and the ensemble approach. a) Graph invariants XGBoost model; b) Resnet-50 model and c)
Ensemble model.

FIGURE 11. Validation Curve for the graph-invariant XGBoost model.
F1-Score was used as evaluation score metric. Training and cross
validation scores were displayed.

very low resolution images. It’s common knowledge that
low resolution of input images significantly aggravates the
performance of neural networks of complex architecture.
The main advantage of our proposed method is that using
the graph invariants we managed to increase the amount of
useful information extracted during training on images of low
quality and low dimensionality. In addition, our combined
(ensemble) method might outperform similar approaches that
use exclusively high-resolution images thereby showing the
promise of further in-depth application of graph invariants
in the task of medical image classification. To the best
of our knowledge, this work is the first to use this type
of weighted triangle-free graph construction to generate
specific invariants based on edge weights, shortest paths
and degrees of vertices and their neighbors for further
training of machine learning models and subsequent enrich-
ment and improvement of neural networks of complex
architecture.

The major limitation of the proposed method is its
relatively high computational complexity. The invariants
related with the Maximum flow problem (such as Node
Connectivity and Edge Connectivity) as well as the invariants
based on the calculation of all-pairs shortest paths in
the graph such as Edge Betweenness Centrality are the
most computation-consuming with computational complex-
ity exceeding O(n2 log n). However, possibility of using the
low-resolution images for generating synthetic features based
on these invariants does alleviate the computation costs.

VII. CONCLUSION
In this study, we considered the problem of converting
images into weighted graphs, calculating invariants, and
trained several image classification algorithms. During the
computational experiments on a real-world image dataset
it was shown that the method proposed can improve
the performance of the network architecture ResNet-50.
Further steps of research may include analyzing different
approaches to edge extraction in images and obtaining
graphs from them (such as the use of Sobel filter [55]
or Canny detector [56]), which might further improve the
results along with more accurate detection of the edges and
boundaries in the image [57]. Mathematical problems related
to changes in graph structure as the image size increases (e.g.,
estimating the growth of connected components) seem to be
a promising research direction and an interesting theoretical
problem [58].
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