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Abstract—The properties of solvability/regularity of problems and correctness/completeness of algorithmic
models are fundamental components of the algebraic approach to pattern recognition. In this paper, we for-
mulate the principles of the metric approach to the data analysis of poorly formalized problems and hence
with obtain metric forms of the criteria of solvability, regularity, correctness, and completeness. In particular,
the analysis of the compactness properties of metric configurations allowed us to obtain a set of sufficient
conditions for the existence of correct algorithms. These conditions can be used for assessment of the quality
of the methods of formalization of the problems for arbitrary algorithms and algorithmic models. The general
schema proposed for the data analysis of poorly formalized problems includes the criteria in the cross-valida-
tion form and can assess not only the quality of formalization, but also the extent of overtraining pertaining
to the procedures of generation and selection of feature descriptions.
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1. INTRODUCTION
An adequate formalization of problems (i.e., gener-

ation of feature descriptions and of classes of objects)
is a necessary condition for the application of the con-
structs of the algebraic approach to recognition [1–8]
as well as of the rest of the methods of intellectual data
analysis [9–15]. Formalization consists in defining a
function  that transforms the set of initial
descriptions of objects X into a set of precedents Q. A
one-to-one correspondence between the elements of
the sets X and Q corresponds to the satisfiability of the
strong form of the axiom of correspondence [9].

Within the present series of papers, we carry out an
analysis of poorly formalized problems by two com-
plementary approaches: factorization, i.e., reduction
of a problem to a binary form and metrization, i.e.,
introduction of metrics in the feature sets and feature
descriptions of objects. In [12], on the basis of the fac-
torization approach, we obtained combinatorial crite-
ria of solvability and regularity of recognition prob-
lems, of correctness of algorithms, and of completeness
of algorithmic models.

ϕ →: Χ Q

Suppose given a formalization method ϕ, a set of
initial information Ii, a set of final information If, a
space of “admissible” descriptions of objects

, and a set of precedents . The
set  consists of objects , where  corre-
sponds to the feature values ,

 (  is a set of values of the k-th feature), and
 contains information  on the

membership of objects in each of the l classes. Then,
for a given feature selection mask

, , and a factorization

method  →  (verifica-
tion of the membership of the values  of the
kth feature in the same equivalence class of feature val-
ues), we formulated the solvability and regularity cri-
teria for the corresponding problem [12]:

• solvability criterion of problem :

(1)  ⇒  

 = 1.

• regularity criterion of problem :
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(2)  = 1.

For a given algorithm  and a given vec-

tor of parameters  of the algorithm, which
reflects the “internal settings” of the algorithm, we for-
mulated the correctness criterion of the algorithm [12]:

(3) 

For a given regular sampling operator ,  =
 ,

and a parametric algorithmic model  =
  →  (  is a method

of calculating the vectors of parameters  that is used
in the given model), we formulated a completeness cri-
terion of an algorithmic model [12]:

(4) = .

For the above-described criteria, we obtained
appropriate combinatorial functionals ,

, , and , which
characterize the “degree” of satisfiability of the crite-
ria for specific , χ, , , and . 

We also obtained cross-validation forms of the cri-
teria, which include testing over a set of samples 
(in the case of the completeness criterion of models,
the testing is performed over a regular ):

• solvability criterion of problems , :
(1.1)   ⇒

  = 1,

• regularity criterion of problems , :
(2.1) , ,

  = 1,
• correctness criterion of algorithm :

(3.1) , ,

 = ,
• completeness criterion of a homogeneous paramet-

ric algorithmic model :
(4.1) ,

, .

The homogeneity of a model  consists in the
equality of the range of values and the dimension of
the vector of parameters , each of which is calcu-
lated by a unique method  by some set of precedents.
The expressions “ ” and “ ”
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indicate that the vector of parameters and the feature
selection mask are calculated on the basis of the set of
precedents  and in fact correspond to the “learn-
ing” of the algorithm .

Criteria (1)–(4) and (1.1)–(4.1) make it possible to
formulate various methods for the calculation of fea-
ture selection masks (for example, on the basis of the
dead-end property of masks with respect to the solv-
ability/regularity criteria [13–15]) on the basis of one
or another set of precedents . The masks ,

 =  ,
, thus obtained imply, first, that the features

are ordered by “informativity” (so that the smaller val-
ues of index k correspond to the greater informativity)
and, second, that there exist two classes of features:
informative ( = 1) and noninformative ( = 0) ones.

Therefore, the results of [13–15] can be considered
as ingredients of a theory pertaining to classification of
feature values, which, in fact, has been developed
during the analysis of poorly formalized problems [9–
12]. Within the framework of such a theory, each fea-
ture takes a finite set of values on any finite sample of
objects. These values of features have both the initial
description, which is represented in the set X (the state-
ment of the problem in the problem domain), and a
description in the form of a subset of objects of the sam-
ple under test and a subset of Cartesian products of sub-
samples of objects from pairwise different classes.

Within this theory, methods for calculating masks
 on the basis of the set of precedents  represent

a special variant of algorithms, which, just as the
sought algorithms , can also be character-
ized from the viewpoint of the “accuracy of classifica-
tion,” “generalizing ability,” etc. Therefore, the com-
binatorial functionals , , and others
obtained in [12] and corresponding to the above cross-
validation forms of the criteria of algebraic approach
indeed characterize the “overfitting” of the algorithms
for calculating the masks  (i.e., feature selection
procedures). In the present study, we formulate the
principles of the metric approach to the analysis of the
satisfiability of the criteria of the algebraic approach to
pattern recognition.

2. THE PRINCIPLES OF THE METRIC 
APPROACH TO THE ANALYSIS OF POORLY 

FORMALIZED PROBLEMS

The experimental and cross-validation analysis of
the above-described criteria and the practical investi-
gation of poorly formalized problems within the fac-
torization approach requires that a few preliminary
steps should be made. First, one should define a for-
malization method , which is essentially required for
constructing the sets of precedents on the basis of the
given set of samples . Second, one should introduce
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some methods  that define equivalence classes of
the feature values. Third, one should define methods
for estimating the informativity of the features.

An alternative approach to factorization is the metric
approach to the data analysis of poorly formalized prob-
lems, which is based on the introduction of certain met-
rics over the sets of features and over the sets of feature
descriptions of objects (i.e., metrization of a problem).

The metric approach significantly differs from the
factorization approach. On any finite sample of objects,
an arbitrary feature takes a finite set of values each of
which can be considered as a binary (boolean) feature.
Naturally, such a trivial factorization allows the applica-
tion of the solvability/regularity and of the correct-
ness/completeness criteria. However, the number of
binary features in this case significantly increases with
the size of the samples. Moreover, the binary features
thus obtained turn out to be essentially interdependent.
As a result, one can expect that the indices of “accu-
racy” and “generalizing ability” of the algorithms that
perform the classification of the values of such features
will be much lower than it would be expected.

Therefore, the metric approach (within which the
concepts of compactness [10] and density [11] of sets
of points in a metric space and of classes as certain
“compact” sets of points are introduced) seems to be
more promising. The metric approach allows one to
take into account the interdependence of the feature
descriptions and to identify the groups (“condensa-
tions”) of feature descriptions, which, in a sense, are
more “informative” than some individual features or
feature values.

The metric approach suggests the construction and
the analysis of the properties of conjugate pairs of met-
rics , where  is a metric on the space of fea-
tures and  is a metric on the space of objects.
Depending on the goals of the study, this pair of met-
rics can be defined either on the basis of initial feature
descriptions of objects in a set X or on the basis of fea-
ture descriptions in the already constructed set of
precedents , . Note that, in practice, it is
expedient to define the metric  as a function of 
whereas the definition of  in terms of  is of less
practical interest.

The metrics  can be defined by purely heu-
ristic methods (for example, by introducing some lin-
ear space on the vectors of features, some probability
measures, and so on). When introducing heuristic
metric functions, the latter may turn out to be semi-
metrics ( , ). The formalism developed
for the analysis of metric configurations can also be
applied to both metrics and semimetrics.

In one of the previous papers [9], during the analysis
of the formalization of problems, the authors obtained
a theoretical substantiation for introducing the metric

. Therefore, below, by a “metric” we mean precisely

δ ()k

πρ ρ( , )q πρ
ρq

ϕ( )a ∈ ζ̂a X
ρq πρ

πρ ρq

πρ ρ( , )q

πρ ≥ 0 ρ ≥ 0q

πρ

 defined on the space of features (unless it is stated
that the discourse concerns the metric ).

3. ON THE GENERATION OF “DERIVATIVE” 
FEATURES OVER THE SET OF INITIAL 

DESCRIPTIONS OF FEATURES
In [9], we have shown that the presence of feature

descriptions of objects in the set of initial descriptions
X is equivalent to the definition of a system of unor-
dered subsets of X,  = 

  . Assuming that all
subsets π(X) are either “open” or “clopen,” the topol-
ogy of feature descriptions  corresponding to X is
defined as , where

, “ ” denotes the union of ele-
ments of the set of subsets π(X), and “ ” is the inter-
section of elements. If the set π(X) satisfies the neces-
sary and sufficient condition for the existence of the
topology  over the set X, , then π(X)
represents a prebase of , and the set  is a base
of .

The elements of  may be subsets of each other,
so that a natural ordering by inclusion arises between
these subsets, that corresponds to a partial order rela-
tion defining the existence of a corresponding lattice

 each element  of which uniquely
corresponds to a certain element .

Numerical features are arranged along the maximal
chains of a boolean lattice, so that the “motion” from
the minimal element of the chain to the maximal ele-
ment of the chain corresponds to enumeration of the
values of the numerical feature, from minimal to max-
imal value. Quantiles of a numerical feature correspond
to subchains of fixed length. Binary (boolean) features
correspond to bundles of maximal chains, each of
which includes three nodes of the lattice: the zero ele-
ment , a corresponding subset of X (the “central
node”), and the identity element I. “Categorial” fea-
tures correspond to antichains of a boolean lattice.

When introducing an isotonic (monotonic) esti-
mate  in a boolean lattice  ( ,

 = ), the function
 =  is a metric that forms a

metric space . A subspace
 of a metric space , , is a

metric space constructed over the corresponding sub-
set of the topology ; i.e.,  satisfies

 =  =
.

When the strong form of the axiom of correspon-
dence is satisfied, we say that the set of initial descrip-
tions of objects X is regular if the corresponding set of
precedents Q is regular (see the Introduction).
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Theorem 1. For a regular X and under the strong form
of the axiom of correspondence, the topology , the
lattice , and the metric space  are iso-
morphic to each other and contain subsystems that are
isomorphic to an arbitrary prebase .

Proof. The isomorphism between  and
,  and , and  and
 is obvious by construction, since both the

lattice and the metric space are constructed over ele-
ments of one and the same topology . In addition,
the values of the metric for an arbitrary pair of points
in  are calculated on the basis of pairs of ele-
ments. For a regular X, the topology  is a discrete
topological space, and the lattice  isomorphic
to  is an atomically generated boolean lattice (see
Theorems 2 and 3 in [9]). In this case, the set 
contains an arbitrary subset of X. Hence, any element
of the system of unordered subsets  is uniquely
assignable to the corresponding element of  (since

). Since the sets  are pairwise differ-
ent for regular X, each element of a subset of  cor-
responding to the mapping is also uniquely assignable
to a certain element of . Accordingly, there exists
a sublattice in  and a subspace in ,
related by an isomorphism to a prebase of . The
theorem is proved.

Corollary 1. The topology  and the lattice
 are isomorphic, so that the bijective operator
 →  is defined.

Since the subsets of the set X are elements of the
topology  and the lattice ,  can be con-
sidered as the identity operator.

Corollary 2. There exists a bijection between 
and , so that the operator ,  →

, and its inverse, , are defined.
Corollary 3. Suppose that, for the kth feature with the

range of values , the injective operator
 is defined. Under the hypothesis of

the theorem, to each object from X, there corresponds an
ordered subset of elements of the lattice , the
intersection of all nonempty elements of this set contain-
ing a single object.

Under the hypothesis of the theorem, each element
of the set of initial descriptions  uniquely corre-
sponds to a certain element of the set Q; i.e., an object
in the set  corresponds to a vector of heteroge-
neous feature descriptions , k = 1, …, n. Take an
arbitrary, ith, object from a regular X. The operator 
maps every value of the kth feature of the ith object,

, to the corresponding element of ,
, so that the initial description  corre-

sponds to the ordered set . If the set
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,  contains more than one
object, then this contradicts the condition of regularity
of X. If  is empty, this corresponds to , which
is certainly false.

Thus, the regularity of X is the most important con-
dition imposed on the set of initial descriptions since
the regularity guarantees the existence of an isomor-
phism between  and the corresponding subsys-
tems  and  and, hence, the applicability of
the constructions of the formalism developed.

An important corollary to Theorem 6 from [9] is
the fact that, under the substitution of the height of a
lattice element for , we obtain Frechet–Nikodym
metric. The metrics over elements of the lattice

 can also be introduced heuristically: for
example, by the analysis of “interactions” between
different types of features (numerical–numerical,
binary–numerical, and so on) [9].

The metric space  contains
points corresponding to specific values of features and
to all possible combinations of feature values repre-
sented in the descriptions of objects from X. Under the
regularity of X, , , and  also con-
tain elements corresponding to an arbitrary classifica-
tion problem with two classes  and  (since lattice

 is boolean and topology  represents a dis-
crete topological space). Naturally, the metric  allows
one to calculate the distances between the points corre-
sponding to the classes of objects and the points corre-
sponding to some combinations of feature values.

The earlier developed methods of analysis of the
properties of compactness [10] and of point density
[11] in metric spaces that arise during the formaliza-
tion of recognition problems can be used when certain
metric configurations (ρ-configurations, symmetric
matrices of pairwise distances  are defined). Note
that, in [9–11], ρ-configurations are also represented
as triangular semimatrices of distances, which are ele-
ments of the corresponding metric cone.

According to Theorem 1 and its corollaries, the
definition of a certain subset , ,
corresponds to the choice of a metric subspace

 isomorphic to a certain element of
the space of matrices  ×  =

. The isomorphism between  and the ρ-
configuration  suggests the existence of the

inverse  of the operator 

  so that a metric configuration
 is defined. Denote the ith row of the

matrix  as  and the distance between the ith and
jth points of the ρ-configuration  as , or as .
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The set ψ generating the ρ-configuration  may
contain elements of  corresponding to a prebase
of  (the “initial” set π(X)), to the base of  (the
set ), to some subsets of the “most informative”
values of features, etc. In the analysis of a certain recog-
nition/classification problem,  also contains elements
of  that correspond to the classes  and .

Theorem 2. For a regular , the set of mappings
 →  is nonempty.

Proof. Elements of the lattice  are given by
subsets of the set X, which are also elements of the
topology . For a regular X,  forms a discrete
topological space and contains any subset of X, and
there exists a bijection between the elements of 
and the boolean lattice . Accordingly, an arbi-
trary subset  uniquely corresponds to a
set of subsets of X which are also represented by ele-
ments of the lattice  and by points of ,
such that 

 → . Introduce an operation
 for the aggregation of feature values,

. Such is, for example, the
operation of union of the subsets of X corresponding to
the elements of the set ψ with the formation of the set

, or the operation of intersection of sets in 
with the formation of , and so on. Since the
topology  is discrete and the lattice  is
boolean, the operation , as well as the operation 
(just as a result of any other operation ), will be valid
both in  and in . Since the operator κ is
bijective, an arbitrary subset  can be
mapped to a corresponding element  by the
operation , so that the mappings  exist, at
least for the considered examples of the operator .
The theorem is proved.

Corollary 1. A subset of points of an arbitrary ρ-con-
figuration over a regular X can be uniquely assigned a
single element of  and a single element of .

Corollary 2. Suppose that, in an arbitrary ρ-configu-
ration , , n subsets of the set ψ and an
operator  are defined by a system of sets  =

 . Then the ρ-configuration
 can be uniquely transformed into an n-dimensional

metric configuration.

Corollary 3. A mapping  can be applied to all
points of the configuration  if and only if  con-
tains the covering of ψ, i.e., . This is obvious
because the operator κ is bijective.

Theorem 2 and its corollaries show that the ρ-config-
uration  generated over  can be trans-
formed into a certain “derived” n-dimensional ρ-config-
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uration  if (1) the set of initial descriptions X is reg-
ular, (2) n subsets ψ are defined, and (3) the operation of
aggregation of feature values C is defined.

Recall that the elements of a set ψ correspond to
certain values of features or combinations such values.
Therefore, the mappings  actually correspond
to the procedures of generation of some “derived” feature
descriptions on the basis of the collections of feature
values defined by a system of subsets from  of the
subset .

The subsets comprising the system , on one
hand, can be defined empirically from some expert
considerations. On the other hand, one can apply the
methods of the analysis of the properties of compact-
ness and density [10, 11] in order to define the system

. An essential condition imposed on  is the
covering of the entire set ψ by the elements of 
(Corollary 3 to Theorem 2).

4. METRIC FORMS OF THE CRITERIA 
OF SOLVABILITY, REGULARITY, 

CORRECTNESS, AND COMPLETENESS
Consider a two-class problem in which each object

from the set of precedents Q belongs either to a class
 or to a class  so the conditions

 and  are satisfied. For a
regular X, a boolean lattice  always contains ele-
ments “ ” and “ ” that correspond to the definitions
of the classes  and , , . In an

atomically generated boolean lattice , 
chains of length  are incident to the “ ” element
and correspond to various combinations of feature val-
ues represented in the initial descriptions of objects. The
computation process of a correct algorithm can be envi-
sioned as a “motion” along one of these chains.

Suppose that a certain algorithm makes  errors on
objects from the class . This corresponds to the
existence of  vertices of the lattice to
each of which  chains are incident. Therefore, tak-
ing into account that in real-world problems  is
measured in millions of objects, the complexity of the
lattice  precludes seeking the correct algo-
rithms for solving the problem simply by complete
enumeration of the lattice elements.

The introduction of sets , of a system
of subsets , and of mappings  is essential
for finding tractable statements of poorly formalized
problems and allows one to reduce significantly the
extent of enumeration of the elements of the lattice

 when searching for correct algorithms. For
example, when searching for the conjunctions of the
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feature values of complexity m in the method of logical
rules in the “initial” ρ-configuration  consisting
of n0 points, one needs to enumerate  combinations
of feature values. On the contrary, in the derived con-
figuration , enumeration of only  com-
binations will be required, . When analyzing
specific problems, it often turns out that ,
which allows one to reduce the extent of enumerative
search by orders of magnitude.

To estimate the collections of feature descriptions
within the theory of classification of feature values
developed here, one applies the solvability/regularity
and correctness/completeness criteria. Consider
interrelations between the properties of the ρ-configu-
rations under test and the satisfiability of these criteria.

In the formalism developed, the elements of the
lattice are given by subsets of the set of objects X.
Suppose that a given set ,

 ,
, contains, along with the elements corre-

sponding to some feature values ( , ), the

element  corresponding to the set of all

objects of the class . Define a “primary” ρ-config-
uration . Note that the dis-
tance between  points of the ρ-configuration

 corresponding to the class  and an arbitrary
jth point of  can take, generally speaking, the
zero value (i.e.,  may correspond to a semimet-
ric).

Suppose given an operator , a set
, and a system of subsets  of the

set ψ such that  also contains an element ,
 = , 

, . On the basis of

the set  and the operation  ( ),
which includes the operator of aggregation of feature
values  ( ), we form a “derivative” ρ-con-
figuration . To this end, we apply  to every ele-
ment of  so that  = ,

. Naturally, the -dimensional
 also contains the point corresponding to .

Just as , the configuration  may correspond
to a semimetric.

Theorem 3. Suppose given a ρ-configuration 

(this may be a “primary”  or a “derived” 
configuration) containing a point ,

, represented by a row with index 
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m
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( ). Then the fulfillment of the condition

 , , is suffi-
cient for the existence of at least one correct algorithm for
solving the corresponding solvable problem .

Proof. A metric space  is generated by a
metric that is a function of an isotonic estimate 
over elements  of the lattice  (see [9]). For

, we obtain , which,
due to the isotonicity of the estimate, implies . In
the case of finite lattices, the condition  is
transformed into  (since, in finite lattices,
the values of the metric are generally discrete, with a
finite step size).Thus, the condition ,
where  is a minimal nonzero distance in ,
implies the identity of the sets x and y.

Next, an arbitrary ρ-configuration is defined as a
composition of operators  and ,

. Due to the existence of inverse oper-
ators of  and , an arbitrary point of  corre-
sponds to a certain element of the set , which, in
turn, corresponds to a certain combination of feature
values in the initial descriptions of objects X or to the
class . Hence, the jth element of , ,
which satisfies , corresponds to a com-
bination of feature values that (1) allows one to distin-
guish all the objects of the class  and (2) distin-
guishes none of the objects of the class , i.e., is a
test. Within, for example, the method of logical rules,
this combination of feature values can be represented
as an appropriate disjunctive normal form and corre-
sponds to a correct algorithm. If one can construct at
least one correct algorithm for solving a problem

, then the problem  is cer-
tainly solvable. The theorem is proved.

Corollary 1. The fulfillment of the hypothesis of the
theorem for all elements of a regular set of samples 
is equivalent to the existence of at least one complete
algorithmic model. 

This is obvious from the definition of the com-
pleteness of an algorithmic model (see the Introduc-
tion).

Let us explain the meaning of Theorem 3. Indeed,
the assertion of the theorem can be applied to both
“primary”  and “derived”  configurations.
From the practical point of view, however, the pres-
ence of a “feature” among the primary feature
descriptions that is actually identical to the sought
class is a degenerate case and is not encountered in
real-world poorly formalized problems. When such an
element is found in a derived” , this means that
the operations undertaken (a choice of the system of
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subsets , aggregation of feature values, etc.)
allow one to distinguish such a chain among all the
chains of  that is incident to the vertex  of
the lattice and, accordingly, contains all combinations
of features necessary for constructing a correct algo-
rithm for the class . In this sense, the condition

   is a constructive

criterion for assessing the “quality” of the generated
sets of feature descriptions.

When analyzing real data of poorly formalized
problems, the cases when  are not
encountered. Nevertheless, the distances from the
point  to other points of the ρ-configuration 
under test characterize the “quality” or “informativ-
ity” of  with respect to the class  the greater is
the distance between an arbitrary point and the point

, the lesser is the “informativity” of the feature
value, corresponding to the arbitrary point in view. 

Therefore, we can assume that the points from 
that correspond to the most “informative” features are
located in some “neighborhood” of the point .
Define a parametric neighborhood of the ith point,

, as a subset of rows of the matrix  chosen on
the basis of the correspondence of the distances

 to a value of a certain parameter r, i.e., the
radius of the neighborhood. In the simplest case, this is
a closed spherical neighborhood of the ith point,

 =  . For any
definition of the neighborhood, the parameter r
always has a certain maximal value  such that

, whose existence is obvious from the
finiteness of . When  contains a point ,
i.e., a point corresponding to a class of objects that is a
complement of  in the boolean lattice , one
can define  as .

Theorem 4. Suppose given a regular set of descrip-
tions of objects X. For given set , ρ-config-
uration  containing a point with index , and
method of choice of the parametric neighborhood ,
the solvability (1), regularity (2), correctness (3), and
completeness (4) criteria can be represented as functions
of the radius of the neighborhood of the point .

Proof. Based on Theorem 3 and the definitions of
criteria (1)–(4), we obtain “neighborhood” formula-
tions of these criteria. To this end, we should define
operations  and  and a method for calculating a
mask .

A configuration  consisting of n points,
whether  or , is generated by a set

+ ψ1( )nS
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, , whose elements are given by
various subsets of the set of objects X. Each such sub-
set, corresponding to a point in , is uniquely
defined by a characteristic function over the set X (nat-
urally, the set of values of the characteristic function is

). Hence, any point of  (including ) can
be considered as a point representing some boolean
(binary) feature (this feature may not even be repre-
sented in the initial feature description of π(X)).
Therefore, we define a set of initial information

 and a function  = .
We will consider the problem in the two-class form,

i.e.,  contains a single point, which corresponds to
some class, the point . The criteria formulated
below are generalized to the case of a problem with
many classes simply by introducing additional points
into  that correspond to other classes and testing
the criteria for each class. Therefore, we define a set of
final information as .

For a regular X, an isomorphic set of precedents 
for an arbitrary sample  =  con-
sists of objects , , , i.e.,  =

, , where 
, . Accordingly, ϕ, the opera-

tor of formalization of the problem, is defined as  =
 , where 

is the sample considered. For a given neighborhood of
the point  with radius r, , a feature
selection mask  is calculated as

 ∈ .
Then, substituting the operations described into defi-

nitions (1)–(4), we obtain corresponding parametric cri-
teria whose satisfiability depends on the radius of a
neighborhood in the metric configuration :

• solvability criterion of problem ,

(1.2)  ∈

 ∈  ∈ ,

• regularity criterion of problem ,

(2.2)  ∈  ∈

 ∈ ,

• correctness criterion of algorithm ,

(3.2)  ∈ 

,
• completeness criterion of algorithmic model

,
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(4.2)  

 ∈ .
Each of the criteria (1.2)–(4.2) can easily be repre-

sented as a function with the range of values [0,1], that
depends on the parameter r. The theorem is proved.

Corollary 1. For , , testing the satis-
fiability of criteria (1.2)–(4.2) is equivalent to calculat-
ing the values of combinatorial functionals, each of which
is a function of the radius r. 

Take, for example, the solvability criterion (1.2).
The functional corresponding to (1.2) is expressed as
follows:

Then the solvability of  for some value of
 is equivalent to . In the same way

as in [12], we define the combinatorial functionals
, , and .

Corollary 2. When criteria (1.2)–(4.2) are satis-
fiable for , one can calculate some minimal val-
ues of the radii for which the criteria are still satisfiable.

In the case of the criterion (1.2), such a minimal radius
is defined as   =

 . Conventionally, this
value of the radius, , can be called the “solvability
radius.” The “regularity radius” , the “correctness
radius” , and the “completeness radius”  are calcu-
lated analogously.

Corollary 3. When criteria (1.2)–(4.2) are satisfied,
for given problem, , and algorithmic model,

 ≤ .
Criterion (2.2) does not contain the congruences

 existing in (1.2), so that a greater number of
pairs of objects are compared in (2.2) than in (1.2). To
distinguish a greater number of pairs of objects, one
may need a greater number of distinguishing features.
A still greater number of distinguishing features may
be needed to find correct algorithms and, even more
so, complete algorithmic models. Hence, the values of
the corresponding radii grow.

Corollary 4. Suppose that the point  corresponding
to the class  opposite to  in a two-class statement of the
problem is also represented in . Then, the values of the
functionals , , , and

 and the radii , , , and  may be

significantly different for  and . 
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Depending on the choice of , the
ρ-configuration  may contain features that are
“positive” for  (i.e., features that are more frequent
in objects of the class  correspond to the points that
are closer to the point ) and, for example, may
not contain features that are “negative” for  (that
correspond to points that are closer to the point

). Then, naturally, for the same value of the
radius, the neighborhoods of the points  and

 will contain significantly different numbers of
points corresponding to distinguishing features.

Thus, the satisfiability of the solvability/regularity
and correctness/completeness criteria depends on the
radius of the neighborhood of the point , corre-
sponding to the class of objects considered in the rec-
ognition problem, in the ρ-configuration . The
cross-validation forms of criteria (1.2)–(4.2), similar
to criteria (1.1)–(4.1), are obtained from (1.2)–(4.2)
by introducing a certain feature generation operator 
that calculates a set ψ generating  on the basis of
some set of precedents . Then the ρ-configuration

 is a result of “learning” on the set , and
the satisfiability of criteria (1.2)–(4.2) is tested on a
test set , , . The methods of intro-
ducing the operator  will be considered separately.

For a given algorithm  (algorithmic model
), the threshold values of the radii , , , and

 characterize, in part, the joint “quality” of the sub-
sample of the feature values  and the
metric ρ that generates a ρ-configuration . A
practically more useful form of representation of data
on the “quality” of  under test with respect to the
recognition problem considered is given by the graphs

, , , and
. Moreover, quantitative estimates

of such a joint “quality” can be obtained on the basis
of (1) the empirical distribution function (EDF) con-
structed over the set of numbers 

  (in the present series of works,
these EDFs are called the “i-spectra of an ρ-configu-
ration” [11]) and by (2) the value of the minimum dis-
tance in the set .

5. METHODS OF GENERATION 
OF THE -CONFIGURATIONS 

ON THE BASIS 
OF THE -CONFIGURATIONS

Above we presented the results of the analysis of the
solvability/regularity and correctness/completeness
criteria from the viewpoint of the neighborhoods in
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the -configurations (i.e., ρ-configurations of the
features). Below, we will show that these criteria of the
algebraic approach can also be formulated through
analysis of -configurations, which reflect the dis-
tances between elements in the set of precedents (i.e.,
between the objects).

Of no less importance is that adequate methods for
calculating the distances between pairs of objects are
required to increase the efficiency of various “metric
methods” of pattern recognition: the method of k-
nearest neighbors, the estimate evaluation algorithm,
the methods based on the introduction of linear spaces
of certain dimension (SVM, RVM, etc.) [16].

One can propose several general approaches to the
formation of ρ-configurations of objects by using the
ρ-configuration of features. First, these approaches
may be of totally heuristic character. Second, the
approaches may be based on some elements of the
suggested formalism (for example, on the analysis of
ordered sets of lattice elements or unordered subsets of
the set ψ that generates the -configuration ).
Here we focus on the second group of approaches.

First, within the formalism developed, a primary
feature description of an ith object can be represented by
an n-dimensional ordered set of elements of the lattice

 i.e., by the set  (Corollary 3 to
Theorem 1). Each element of  is a subset of objects
from X that corresponds to a value of the feature .
In the case of numerical features, such a subset corre-
sponds to the maximum element of the corresponding
chain in  or to the complement of such an ele-
ment and in the case of “categorial” features to an ele-
ment of an antichain. Boolean features are represented
simply by the vertices of the lattice (“central nodes” of
the chain bundles, as it was mentioned previsouly). In
the case of a “derived” n + 1-dimensional -con-
figuration, information on objects can also be repre-
sented as an n + 1-dimensional ordered set  of sub-
sets X whose elements correspond to “aggregated”
binary features.

Representation of information on objects as the

sets  or  allows one to formulate the definitions of
metrics  in different ways. Suppose that n-dimen-
sional feature descriptions for objects  and  from a
set of precedents Q are represented as the sets 
and , , . Since 
and  are ordered and have identical dimensions, any
method for calculating the metric distance  between

 and  on the basis of the sets  and  necessarily
involves (1) a method  for estimating the pairwise
matching of the kth elements of  and  and (2) a
method  for combining the individual estimates

. Thus, in the general case, the distance
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.
The “setting of the metric” in accordance with the

set of precedents Q consists in the choice of the meth-
ods  and Σ, the choice of the numerical parameters
of these methods (if such parameters are used), and so
on. For example, the method  is defined for each
kth position, thus allowing one to introduce such
numerical parameters as the weights of features. The
role of  can be played by the metric  itself (since

), by the product , where  is
the weight of the kth feature, etc., and the role of Σ can
be played by a sum, sum of the squares, squared root
of the sum of the squares, etc. A natural restriction on
the operations  and Σ is the requirement that the
functional  obtained be a metric.

It is obvious that the calculation methods  and Σ
imply the introduction of some linear vector space. For
example, the application of  and the
use of summation as  is equivalent to the Hamming
metric on the space of boolean vectors. When one
applies  and Σ as a square root of a sum
of squares, then one obtains the Euclidean metric in
the n-dimensional vector space.

The use of “derived” -configurations, ,
provides additional methods for generation of linear
vector spaces on the space of objects. As a result of
selection of feature values by , the derived 
contains elements each of which corresponds to some
binary features and individual values of numerical or
“categorial” features.

Suppose that set of subsets of X , k = 1,
…, n0, corresponds to the “primary” feature descrip-
tion of the object , and ,  = 1, …, n, to a
description corresponding to a “derived” -configu-
ration . Depending on the aggregation operator
of feature values , one can obtain various
n-dimensional boolean or numerical vectors on the
basis of the set .

Suppose, for example, the occurrence frequencies
of feature values in the primary description (i.e.,

) are very small. Then it is expedient to define
an operator  as the operation of union of sets, i.e.,

. In this case, some sets  from the primary
description  appear in some sets . Then the pair
of descriptions ( , ) can be assigned an n-dimen-
sional boolean vector  = 

 or an n-dimensional numerical vector
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then one can introduce some metric over sets of the
corresponding vectors.

Second, in addition to the above-described meth-
ods, metrics can be introduced by introducing linear
spaces corresponding to the ρ-configuration under
test. The generation and analysis of such spaces can be
carried out with the use of ρ-networks [10], in which
the distances of the points to vertices of the ρ-network
serve as a basis for the formation of vectors of given
dimension. This approach can be applied to introduc-
ing a linear space on the basis of both -configura-
tions and -configurations. The generation of linear
spaces on the basis of ρ-configurations is extremely
important and promising direction of research.

Third, note that the representation of information
on an object in the form of an ordered set of subsets of
X allows one not only to introduce some -metric,
but also to assess the “quality” of the feature description
of the object. Let , k = 1, …, n, be a feature
description of object q, whether “primary”  or
“derived” . The empirical distribution function of
distances  between the elements of  characterizes
the “widths” of a feature description of an object:
whether the object is described by a single subset of
strongly correlated features (small values of ), or the
description of the object q represents “widely sepa-
rated” weakly correlated features (high values of ).
Pairwise “widely separated” features are similar to the
concept of a basis of a linear space in which orthogonal
vectors are also weakly correlated (i.e., the values of
each coordinate of a vector may vary independently of
the values of other vectors).

Fourth, one can introduce a distance between objects
on the basis of unordered subsets of set ψ that forms the

-configuration , be it the “primary”  or the
“derived” -configuration .

Theorem 5. In the case of a regular set X, each object
of X corresponds to a unique subset of the points of the -
configuration .

Proof. An arbitrary n-dimensional -configura-
tion  is generated by the set of feature values

  . By defi-
nition, a regular set of initial descriptions X is isomor-
phic to a regular set of precedents Q. Therefore, the
membership of an arbitrary object  in a set  is
equivalent to the existence of an object  in the
feature description that corresponds to the value of the
features such that each element of the set 
describing the object  is either an empty set or one of
elements of ψ. By Theorem 1, in the case of a regular
set of precedents, the intersection of nonempty ele-
ments  contains a single element, i.e., the
object  itself; i.e., each object is described by a
unique collection of sets . Nonempty elements of 
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correspond to the points of , so that each object is
represented by a unique subset of points of a metric
configuration. The theorem is proved.

Corollary 1. For a given set ψ, define an operator
. In the case of regular X,  is injective.

It is obvious that each object corresponds to a
unique collection of elements, so that different ele-
ments of X are mapped to different elements of the
boolean .

Corollary 2. The cardinality of the symmetric dis-
tance between nonempty sets  and  corre-
sponding to objects  and  is the Hamming metric.

In terms of the present formalism, the Hamming
metric is defined as the number of distinguishing
binary features for a given pair of objects. It is the sym-
metric difference between the sets  and 
that contains all the distinguishing features for the
objects  and .

Corollary 3. The expression  ⇒

 represents the solvability criterion of
problem .

Corollary 4. The expression 

 represents the regularity criterion of problem
.

Corollary 5. Suppose that an n-dimensional configu-
ration  contains points  and  correspond-
ing to the classes  and . Suppose given a method for
defining a neighborhood of a point  and

 such that  and

. Then the fulfillment of the
condition  ∩  is sufficient
for the existence of a correct algorithm for solving the
problem .

The proposition is obvious because the condition
corresponds to the presence of a set of strong “posi-
tive” and “negative” features such that the features
form corresponding Zhuravlev’s “tests” that cover the
classes  and .

According to Theorem 5, on the basis of the sets
 and  corresponding to the objects

, one can also construct other metrics. Let us
construct, for example, the distributions of minimum
distances  from each element of  to the near-
est element of  and, vice versa, from  to
the nearest element in . Depending on the
choice of the combination method of these distribu-
tions during calculating a certain functional, one can
obtain different heuristic metrics for estimating the
distances between objects.
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Thus, within the present formalism, there are sev-
eral different approaches to define metric distances
between objects ( ) on the basis of the distances
between features ( ) and, thus, the corresponding
methods of generation of -configurations on the
basis of -configurations.

6. ANALYSIS OF THE PROPERTIES 
OF -CONFIGURATIONS 

AND THE CRITERIA OF SOLVABILITY, 
REGULARITY, CORRECTNESS, 

AND COMPLETENESS

It is clear from the aforesaid that, within the pres-
ent formalism, a method of calculating  is a kind of
“superstructure” over the method of calculating .
Approaches to assessing the “quality” of these -
configurations naturally result from the interrelation
between the properties of -configurations and the
criteria of the algebraic approach.

In -configurations, the classes of objects under
study correspond to individual points of a configuration,
while the objects themselves correspond, in the case of
regular X, to certain subsets of points of the -configu-
ration. Conversely, the points of a -configuration cor-
respond to individual objects, while the classes to the
subsets of points of the -configuration.

By Theorem 5, each object  from a regular 
corresponds to a unique collection of points of a -
configuration, , whose elements uniquely cor-
respond to the elements of a feature description in the
form . The metric  for arbitrary objects 

and  is defined as a functional over  and
or over descriptions  and . According to Corollar-
ies 3 and 4 to the Theorem 5, the metric  should be
defined in such a way that the regularity criterion for

-configurations (2.3) is satisfied. Taking into
account the differences in the structure of expres-
sions (1) and (2), one derives a solvability/regularity
criteria for -configurations (1.3):

(1.3)  ⇒ ,

(2.3) .

Let “ ” indicate that the method for calculating
metric of  is set up with the use of the set of prece-
dents  (as, for example, in the case of a metric of the
form  = , see above). Then
criteria (1.3) and (2.3) imply the corresponding com-
binatorial functionals:
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Thus, the existence of pairwise differences between
objects in the combinatorial forms of the
solvability (1)/regularity (2) criteria and the presence
of distinguishing features in the “neighborhood”
forms of the criteria (i.e., the expressions (1.2) and
(2.2)) corresponds to the existence of nonzero dis-
tances between the two objects in the corresponding

-configuration. Criteria (1.3) and (2.3) also repre-
sent obvious requirements on the generated metric on
the set of objects, under which the collections of dis-
tances in -configurations correspond to the preser-
vation of the solvability/regularity of problems. The
satisfiability of criteria (1.3) and (2.3) on “learning–
control” pairs of samples can be controlled by calcu-
lating the values of the functionals  and

.

Since conditions (3) and (4) contain vectors  that
set the parameters of the algorithm , the analysis of
necessary and sufficient criteria for the correctness of
the algorithm and of the completeness of an algorith-
mic model on the basis of -configurations cannot be
carried out irrespective of a specific algorithm/model.
However, some sufficient conditions for the existence
of correct algorithms and of complete algorithmic
models can be obtained without loss of generality on
the basis of the analysis of the properties of compact-
ness and density as applied to metric configurations.

In the present series of papers, the concept of com-
pactness with respect to such discrete metric systems
as -configurations is constructed by analogy with the
concept of compactness of metric spaces, which is
used in functional analysis [10]. In particular, a gener-
alization of the Heine–Borel–Lebesgue lemma to the
case of metric spaces (a metric space is compact if and
only if it is totally bounded and complete [17]) can be
reformulated in some “discrete form,” because, in a
discrete and finite , there inevitably exists a
certain minimum nonzero distance between points.
Accordingly, the concepts of -boundedness, -
completeness, and -compactness of discrete metric
spaces are introduced. The introduction of these con-
cepts allowed one to show the equivalence between the
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combinatorial heuristic criterion of cluster and the
concept of -compactness (Theorem 1 in [10]).

Definition 1 (the heuristic criterion of a cluster). The
points of an arbitrary cluster  are closer to each
other than to other points of a countable metric space M
with metric :

(5)  

.
In other words, under condition (5) imposed on

some set , the set K is called a “cluster.” Such
criteria are widely used in various approaches to clus-
tering points on the basis of distances. Definition (5)
can be assigned a combinatorial functional 
that characterizes the degree of “ -compactness” of the
set  of points in the metric space M,  =

 > , i.e.,  under

condition (5). Note that, under regularity criterion (2.3),
 is strictly greater than 0.

Theorem 6. Suppose given a problem  with a
class of objects  and an N-dimensional -configura-
tion  corresponding to the problem . Then the

condition  = 1 is sufficient for the exis-
tence of at least one correct algorithm for solving the
problem .

Proof. Under the condition  = 1 in

an N-dimensional , for the class  are defined the

external boundary  =  =

 and the internal boundary  =
 ∈  =  so

that  ∩  (see Corollaries 4−6 to
Theorem 1 in [10]). Thus, between the points of the
class  and all the points of  that do not belong to

 (the class  ), there is a certain “gap” by which (in
corresponding N-dimensional vector space) one can
draw a surface or surfaces that separate all points of 
from all points of . The existence of such a separat-
ing surface or surfaces is equivalent to the existence of
the corresponding correct algorithm. The theorem is
proved.

Corollary 1. A sufficient condition for the existence of
a correct algorithm is as follows:

(3.3) 

Corollary 2. For , the fulfill-

ment of the condition  is not neces-
sary for the existence of a correct algorithm.
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Indeed, separating surfaces exist under the “com-
pactness” of  in , and the “compactness” of  is
not necessary.

Corollary 3. Suppose given a set of objects X in which
the class  is distinguished, and a regular sampling
operator . Denote a method of calculating an N-
dimensional -configuration  by the n-dimensional

-configuration  as , and the
method of calculating  by the set of precedents ,
as . Let us formulate a sufficient criterion for
the existence of a complete algorithmic model:

(4.3)  = 1.

Corollary 4. Let  = 

, , . Then, 
under criterion (4.3).

It is obvious that the fulfillment of the condition of
“compactness” of  in a -configuration  (3.3) by
no means guarantees the existence of a unique sepa-
rating surface and/or the uniqueness of a connected
component of class  (in the sense that two arbitrary
points of class  are never separated by the external
boundary  or the internal boundary )
[10]. However, condition (3.3) guarantees that all
points of the same class  are in some “condensa-
tions”, even if separated from each other by the bound-
ary  or . The “connectedness” criteria
of the classes /  are important auxiliary tools for
estimating the multiplicity of possible solutions to prob-
lem , and obtaining these criteria presents a
separate direction of research. Here we note that such
criteria can be obtained, in particular, by the analysis of
metric condensations [11] in -configurations.

Thus, the introduction of the requirement of the
“ -compactness” of  in a discrete metric space

 (which is obviously a more stringent require-
ment than the combinatorial criteria of correctness (3)
and completeness (4)) allows one to obtain criteria of
the possibility of existence of a correct algorithm (3.3)
and, accordingly, a complete algorithmic model (4.3).

The most important feature of the criteria (3.3) and
(4.3) is that they contain neither a specific algorithm,
nor the parameters of the algorithm; this allows one to
carry out a cross-validation analysis of the satisfiability
of these criteria for various methods of calculation of
metric configurations  and . In this case, the

values of the functionals  and

, which characterize the degree of the “ -
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compactness” of  and , allow one to qualitatively
evaluate the expediency of a method of calculating .

7. CROSS-VALIDATION FORMS 
OF THE METRIC CRITERIA 

OF THE ALGEBRAIC APPROACH
Suppose given a set of initial descriptions X of N0 ini-

tial descriptions of objects and a decomposition of X
into two classes of objects,  and . A set of “admis-
sible” descriptions of objects  and a function ϕ cal-
culating the set of precedents  are defined.
For  and ϕ, the strong form of the axiom of corre-
spondence is postulated, the set X satisfying the regular-
ity condition. Suppose that n0 is the number of given
feature descriptions of precedents in , and all

, the ranges of values of the kth feature, ,
include a neutral element “Δ” corresponding to the
indeterminacy of the value of a feature.

Then, the corresponding topology  and,
hence, the lattice  can be defined [9]. Define a
prebase  of the topology  by injective opera-
tions  such that  consists of
subsets of X corresponding to feature values in the ini-
tial description, i.e.,  = ,

, . Define a set of feature val-
ues  = , .

Cross-validation analysis implies the “learning” of
an algorithm on a single sample  and the “con-
trol” of the results of “learning” by the algorithm on
another sample . “Learning” in the case of the
“neighborhood” criteria (1.2)–(4.2) implies the “set-
ting” of some metric  by the corresponding set of
precedents, while, in the case of the “compactness”
criteria (1.3)–(4.3), it additionally implies the setting
of the metric .

Theorem 7. If identical sets of feature values are
defined for all elements of a given set of samples  over
a regular set X, and aggregated feature descriptions gen-
erated for different samples are unambiguously assign-
able, then the results of cross-validation of the “neigh-
borhood” criteria (1.2)–(4.2) can be represented as the
distributions of values of the corresponding radii , , ,
and .

Proof. Suppose that the condition of identity of the
sets of feature values is satisfied for all , i.e.,:

(6) .

Suppose that a set of subsets X  =
  is constructed over

the set , . Under condition (6), for a
regular X, the elements of an arbitrary pair of sets 
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and , , are unambiguously assignable to
each other and, accordingly, to certain elements of the
prebase .

For a given method of calculation of the metric  and
a given sample , formulate a “primary” -con-
figuration  = , .
Since the method of definition of the subsets  is
such that, for any , the elements of the systems
of subsets  = 

, , , and
 obtained are unambiguously assignable

to each other, it follows that there exists a bijection
 and the following matching condi-

tion of aggregated feature descriptions is satisfied:

(7)  = 

 = .

When defining the operator  →
, under condition (7), the points of any two

“derived” -configurations  =

 ∈  and,
accordingly, , , are also
unambiguously assignable. For short, we will use the
notations  =  and

 = .

Then the cross-validation forms of the “neighbor-
hood” criteria (1.2)−(4.2) can be obtained from (1.1)–
(4.1) by the substitution of the “aggregated” set of

precedents  =  ∈  ∈
 ∈ , the function

 = , and the mask ,
, , 

, where the neighborhood of the point
 is taken in the configuration , while the

kth point of the configuration  corresponds to
the point   in the
configuration  (the expressions are not pre-
sented due to obviousness and tediousness).

Since, by the hypothesis of the theorem, a bijective
operator  exists and the points of two arbitrary

 and  are unambiguously assignable,
then the features selected by the mask  can
also be applied to the objects of the set of precedents

. If conditions (6) and (7) are not satisfied, then
the features obtained for different samples  cer-
tainly do not correspond to each other; therefore,
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there will be no question of cross-validation with
regard to the selection of features.

Therefore, if (6) and (7) are satisfied, then, for
every tested pair of samples , one obtains their
own values of the radii , , , and

 related to testing identical collections of fea-
tures. Accordingly, the empirical distribution func-
tions constructed over the sets of numbers

 , , 
, and  indeed characterize the

satisfiability of the criteria in the cross-validation over
the set of samples . The theorem is proved.

Conditions (6) and (7) in Theorem 7 are important
conditions for the adequate performance of a cross-val-
idation experiment. Satisfiability of the condition (6)
can be technically implemented for sufficiently large
sizes of samples and imposes an important construc-
tive constraint on the choice of the sampling operator

: namely, it has to be chosen in such a way as to satisfy
the cross-validation of the conditions (1.1)–(4.1).
Condition (7), which guarantees correspondence
between the elements of the set  for various

, defines the “determinacy” of the procedure
of calculation of features for arbitrary samples from
the set  and should be tested before the calculation
of criteria (1.1)–(4.1) to select the most acceptable
procedures of generation of .

The fulfillment of the conditions (6) and (7) is also
important for the cross validation of the “compact-
ness” criteria (1.3)–(4.3), since, as noticed earlier, the
setting of the metrics  is performed on the basis of
the calculations of the values of the metrics . For
example, suppose that, descriptions in the form of the
sets  and , , 

, are defined for objects  and . Then
 = , , so

that, in the case of the -configuration  =
, the distances in the -config-

uration  are calculated as

 = 

.

Theorem 8. The cross-validation testing of
criteria (1.3)–(4.3) is possible if, for all elements of a
given set of samples , the identical sets of feature val-
ues are defined, the aggregated feature descriptions gen-
erated for different samples are unambiguously assign-
able, and, for an arbitrary pair of samples , the
“aggregated” set of precedents  contains a subset of
elements that is equivalent to the set of precedents .

( , )a b
( , )sr a b ( , )rr a b ( , )cr a b

( , )fr a b
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ζ̂X
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∈ ζ̂a X

ζ̂X
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ρq
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ς ψ2( ( )))})k a

ζ̂X

∈ ζ̂,a b X
ϕ ( )a b

ϕ ( )a a

Proof. Consider two samples  and the
corresponding metric configurations  and

. Under conditions (6) and (7), the fea-
ture descriptions of an arbitrary ith object in

 = ,  =
, and an arbitrary jth

object in  = ,  =

, have identical dimension
. Moreover, there is a one-to-one correspondence

between positions in  and , that is attributed
to the existence of the bijection  (7).

Therefore, if  and  represent the same

object from X, then, for every , there exists a
renumbering method such that

 and, for any ,

. Hence, for identical  and
, there exists a transformation  such that

 and . Let us
define  so that, if there is no corresponding ele-
ment for  in , then . Then
one can define a subset of elements of the aggregated
set of precedents  for which there exist corre-
sponding elements in the set ,  =

. Under condition (8), for all
objects of the set , there exist corresponding
objects in the set :

(8) .

Accordingly, the use of  =  makes it
possible to express the cross-validation forms of the
“compactness” criteria (1.3)–(4.3).

• Solvability criterion of problems:
(1.4)  ⇒

 .
• Regularity criterion of problems:
(2.4)  

 .
• Sufficient condition of existence of a correct algo-

rithm and a complete algorithmic model:
(3.4)  ∈ 

  .
The theorem is proved.
Corollary 1. Criteria (1.4)–(3.4) imply the correspond-

ing combinatorial functionals that describe the satisfiability
of each of the criteria on “learning” sets from :

∈ ζ̂,a b X
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and on “control” sets:

Corollary 2. The “overfitting” of the algorithms for
the metrization of the feature descriptions by criteria
(1.4), (2.4), and (3.4) is estimated as 

, , and ,
respectively.

Just as in the case of the functionals ,
, etc., instead of , , etc., one can

use empirical distribution functions over the corre-
sponding sets, which are compared by the methods of
nonparametric statistics.

Thus, the conditions (6)–(8) and the Theorems 7 and
8 provide constructive criteria for cross-validation testing
of the satisfiability of the “metric” conditions of solvabil-
ity, regularity, correctness, and completeness. The sets

, required for calculating  =
, , , can be established on

the basis of the analysis of the metric “grains” and “con-
densations” in a -configuration [11].

Note also that the analysis of the “ε-compactness”
property can be carried out, in addition to the combi-
natorial criteria (3.3), (3.4), (4.3), and (5), also by the
analysis of the metric condensations in -configura-
tions: one finds grains/condensations, calculates the
distance of each condensation from the class  using
the metric , the fraction of objects of  in each
condensation, and so on. The function  defining the

-isomorphism condition (which is necessary for the
analysis of metric condensations [11]) is calculated by
comparing the corresponding distances in the -con-
figurations constructed over different pairs of ele-
ments of the set of samples .

l
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8. CONCLUSIONS
On the basis of the metric criteria of solvability and

regularity of recognition problems, correctness of
algorithms, and completeness of algorithmic models
obtained in the present study, we have formulated a
universal general approach to the data analysis of
poorly formalized problems. An important advantage
of the metric approach over the previously formulated
factorization approach [12] is that the metric approach
avoids the arbitrariness associated with the choice of
factorization procedures of feature descriptions. In a
sense, the factorization is performed “automatically”:
the metric configuration contains points correspond-
ing to all possible values of features, which then are
“classified” during the analyses of metric condensa-
tions, aggregation of feature values, and so on. The
proposed algorithm for data analysis of poorly formal-
ized problems first verifies a necessary and sufficient
condition for the existence of a topology over the set of
initial feature descriptions, chooses the most adequate
sampling operator (first of all, on the basis of the sat-
isfiability of the condition of identity of the sets of fea-
ture values). Then, under the condition of matching of
aggregated feature descriptions (which guarantees the
“determinacy” of the feature generation procedure
used), the cross-validation testing of the criteria is per-
formed. The quality of the formalization methods
(including the methods of calculating metrics in the
space of features and in the space of objects) is
assessed by the combinatorial functionals obtained.
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