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1. INRODUCTION

Within the algebraic approach to the solution of
recognition and/or classification problems, a sef of ini-
tial information (1;) and a set of final information (I;) are
defined, and an algorithm solving a problem is sought
as a mapping A(®) : I, — I, [1-4], where 0 stands for
a vector of “internal parameters” or “settings” of the
algorithm. The range of values of 6 depends on the
specific method of construction of the algorithm. The
algorithm A is a function and is constructed as a
superposition A(B) = B(B) o C(B) o D(0), which
includes a recognition operator B, a correcting opera-
tion C, and a decision rule D.

By a parametric algorithmic model is meant a set of

parametric mappings for which a method © of calcu-
lating the vectors of parameters 0, is defined that is
used in the model, so that M *[@] =
{(4,(0,),6,),4,0,) = B,(6,)°C,(0,)0 Dh(eh)|
A,(0,) : I; — I,}. The elements of M*[©] can be used
for solving a whole class of problems, rather than a sin-
gle problem. The problems of this class are defined by
universal constraints I, (“structural information” , using
terminology of Zhuravlev’s school) which distinguish

a family of admissible algorithms M [@, 1] from the
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general model M *[é]) and local constraints (sets of
precedents, which are the subsets of 1, X I ;) [5-9].

In various fields of modern natural science, there
are poorly formalized problems, for which it is impossi-
ble to uniquely define the sets /; and I, [10—12]. This
peculiarity of the poorly formalized problems substan-
tially complicates the application of the constructions
of the algebraic approach to recognition. Accordingly,
the necessity arises to develop an appropriate formal-
ism, which, first, would allow one to find “optimal”,
in a sense, definitions of /; and /,, and, second, would
be consistent with the methods of analysis of the fun-
damental properties of problems and of algorithmic
models [3, 4]: the solvability and the regularity of rec-
ognition problems, the correctness of the (models of)
algorithms, and the completeness of the algorithmic
models.

The property of solvability of problems is defined as
the consistency of universal and local constraints. A

problem is solvable if the set M| [@, 1] is nonempty,
i.e., if at least some of the mappings 4 : I, — I, sat-
isfy both universal and local constraints simultane-

ously. In the general case, algorithms from M [(:), 1]
may impose certain constraints on /; (the choice of
one or another subset of “informative” features,
assignment of weights to features, and so on). Under
some constraints on /;, the solvability of this problem
cannot be guaranteed when analyzing the correspond-
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ing set of precedents. The exact formal definition of
the solvability criterion of a problem depends on the
specific method of representation of initial and final
information on the objects and the corresponding uni-
versal constraints /..

The regularity of a problem is the requirement of a
kind of “collective solvability” of a subset of related
problems. Suppose given a partition of a set Z of prob-
lems under test (for which the universal constraints /;
are satisfied) into equivalence classes (or a “neighbor-
hood of a problem” is defined [1—4]). A problem from
the set Z is regular if it is solvable and all the problems
from the equivalence class (neighborhood) are solv-
able as well. The regularity of a problem is sufficient
for its solvability. An exact definition of the regularity
criterion depends on the specific method of definition
of the neighborhood of a problem.

The correctness of an algorithm or an algorithmic
model implies the compliance of the algorithm or the
algorithmic model with a local constraint (i.e., a set of

precedents). An algorithmic model M [(:),1 ] is com-

plete if, for any regular problem in M[(:), 1], there
exists a correct algorithm. In other words, a model
possessing the property of completeness provides the
solution of all regular problems (for a given system of
universal constraints I) and thus is essentially non-
improvable in the class of algorithmic models under
test [13]. Exact definitions of the correctness and com-
pleteness criteria are obtained for specific systems of
universal constraints.

In the scientific school of Yu.l. Zhuravlev and
K.V. Rudakov, academicians of the Russian Academy
of Sciences, an in-depth theoretical analysis has been
carried out of the properties of solvability/regularity,
correctness, and completeness, which demonstrated
the universality of the constructions of the algebraic
approach to solving recognition/classification prob-
lems. A combinatorial analysis of the solvability and
regularity criteria is of significant practical importance
and allows one to increase the efficiency of the search
for efficient algorithms for solving a number of prob-
lems [14—16].

For the practical analysis of specific recogni-
tion/classification problems, it seems important to
draw parallels between the above-described concepts,
which were developed within algebraic approach, and
some empirical terminology widely used in the field of
computer science. Naturally, the concepts from com-
puter science are not strictly equivalent to the above-
considered concepts of the algebraic approach. Never-
theless, it can be said that the (Zhuravlev’s) correct-
ness of an algorithm corresponds to the 100% accuracy
of the algorithm on a learning sample. The (Zhurav-
lev’s) completeness of an algorithmic model is compa-
rable to the maximum generalizing ability of the algo-
rithms of this model under testing on various samples
of precedents.
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The concepts of “accuracy”, “generalizing abil-
ity”, and the closely related concept of “overfitting”
and “overfittedness” are important for the practical
analysis of specific statements of problems and algo-
rithms used for their solution. When carrying out such
an analysis within the framework of, say, statistical
theory of machine leaning [17], the main problem
consists in obtaining estimates for the error probability
of'the algorithm on test objects. Computational exper-
iments show that, as a rule, the error frequency v, on
a learning sample is much lower than the error fre-
quency v, on the test sample. The difference Av =
V"V, is called overfittedness, and Av > 0 points to the
existence of overfitting of the parameters of the algo-
rithm under study. In other words, overfitting corre-
sponds to too stringent “fitting” of some “internal
parameters” of the algorithm to a specific leaning
sample, which reduces the generalizing ability.

The problem of estimating the probability of over-
fitting and the generalizing ability has not yet been
fully solved. In practice numerous functionals, each of
which formalizes some definition of the generalizing
ability, are applied. The adequacy of the theoretical
estimates of the generalizing ability essentially
depends on the original axiomatic, in particular, on
the method of formalization of the concepts of gener-
alizing ability and overfitting [18]. An important result
of [18] is an illustration of the fact that a combinatorial
calculation of errors in a cross-validation setup (such
as “sliding control”, for instance) characterizes the
generalizing ability of the algorithm much better than
any of the known “theoretical” probabilities of overfit-
ting.

Thus, on one hand, in the algebraic theory of rec-
ognition, there is a theoretical concept of complete-
ness of an algorithmic model that characterizes some
fundamental “versatility” of this model (for an arbi-
trary set of precedents, there is a correct algorithm in
the model). On the other hand, there are practically
well-established empirical methods for estimating the
“generalizing ability,” which are based on intuitively
clear concept of “cross-validation” and which allow
one to estimate the overfitting of algorithms with the
use of some estimation functionals.

At the same time, the analysis of poorly formalized
problems faces an obvious difficulty that makes the
direct application of both the constructions of alge-
braic approach to the synthesis of correct algorithms
and of the combinatorial methods for estimating over-
fitting/generalizing ability of these constructions
almost impossible. In the case of poorly formalized
problems, there are (infinitely) many methods for gen-
erating features, feature values and, accordingly, there
are many feature descriptions of the same problem
(defined as a certain “initial” description of a sample
of objects with membership in classes). In this case,
one needs criteria that would allow one to distinguish
“adequate” feature descriptions, to construct correct
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18 TORSHIN, RUDAKOV

algorithms for such descriptions, and then to estimate
their generalizing ability. The widely known theoreti-
cal constructions do not allow one to evaluate the con-
tribution of “latent” sources of overfitting such as the
procedures of generation and selection of features and
the like.

Poorly formalized problems can be analyzed by two
complementary approaches — by factorization of fea-
ture descriptions (reduction of a problem to the binary
form) and by metrization (introduction of a metric on
the sets of features and on the sets of feature descrip-
tions of objects, and analysis of the compactness and
density of the corresponding subspaces of metric
spaces). In this paper, within the factorization
approach we obtain combinatorial criteria for the
above-considered fundamental properties of prob-
lems, algorithms, and families (models) of algorithms,
and propose cross-validation methods for estimating
the satisfiability of these criteria.

2. FACTORIZATION APPROACH
TO THE ANALYSIS OF POORLY
FORMALIZED PROBLEMS

In the case of poorly formalized problems, the fea-
ture descriptions can be generated by various methods.
Generally, these feature descriptions of objects are
heterogeneous and include binary (i.e., boolean),
numerical, and so-called “categorial” features. In
contrast to “categorial” features, binary and other
numerical ones imply mandatory linear ordering of
the values of features.

By a binary factorization (binarization), we mean a
transformation of some “initial” descriptions of
objects as a result of which the feature description of
any object includes only binary features.

First, we define the solvability and regularity crite-
ria for the sets of binary features and then generalize
them to the case of heterogeneous feature descrip-
tions. The criteria obtained should admit experimental
verification on various samples of objects, according
to the cross-validation ideology.

Let X = {x;,x5,..0, X505 Xy, } be the set of initial
descriptions of objects. Suppose that the sampling
operator of the set X, @, forms a collection of subsets X,
{x = {a, a,....a5,...apyla, < X}, which we will also
call as the collection of samples.

A specific method of realization of é represents,

apparently, one of conditions of the actual computa-
tional experiment: this may be a partition of X into p

equal  parts, épX ={a,...,a, c X|Vk, # k,

a,, Nay, =DB,lay| =la, | = No/p|}; formation of p
randomized samples with returns, each of which con-
tains a fixed fraction s of objects X,

Cp(s)X ={a,,...,a, c X|Vk :|a,| =|s- N, J}, etc. In
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short, the operator é forms a collection of samples iX
of the set X similar to the sampling procedures applied
during cross-validation.

Formalization of a problem corresponds to the defi-
nition of a function ¢ : X — Q for the transition from
some set of initial descriptions of objects in the prob-
lem domain (X ={x;}) to a set of precedents
(0 ={q.lq; = (m;,1,)}), each of whose elements rep-
resents a pair of ith rows of some matrix of information
{m;} and information matrix {;}. The construction of
the function ¢ for a specific problem is the subject of
the appropriate problem-oriented theory [13].

For the statements of problems with » binary fea-
tures and / classes of objects, the elements of the sets

{m,} and {t;} belong to the corresponding subspaces of

the Boolean cube B"" (m, € [0,1]", 1, € [0,1]'). Then,
a formalized statement of problem Z(Pr) with a set of
precedents Primplies finding a method of calculation
of {t,(Pr)} from the values of {m,(Pr)}. The solutions of
such a problem are given by algorithms

A, :[0,1]" = [0, 1]1 from some parametric algorithmic

model M A[C:), 1,1 ={A,}. Local constraints of the algo-
rithms of the model are the sets of precedents

{&(a), Vae éX }. The universal constraint 7, is sym-
metric [13], since the order of elements in the set X and
the sets ¢(a) is arbitrary.

3. DEFINITION OF SOLVABILITY
AND REGULARITY CRITERIA
WITHIN THE FACTORIZATION APPROACH

Now, it becomes possible to formulate combinato-
rial definitions of the criteria of solvability, regularity,
correctness, and completeness. Under a symmetric
universal constraint, by the solvability of problem

Z(d(a)),ace @X , is meant the consistency of the set of
precedents ¢(a). The algorithms A€ M, are func-
tions; hence, the solvability criterion of problem
Z(0(a)) is defined as the corresponding existence con-
dition of a function:

Y (my,n),(my, 1) i m =m, =1, =1,. (1)
d(a)

The algorithms of the model M , may impose con-
straints on the subset of “informative” features that are

used by the algorithms for the calculations. Let y € B”"
be a mask that distinguishes the features used in an

arbitrary object g; = (m;, ;). Then, the solvability cri-

terion of Z(((a)) on the subset of features 7 is obtained

by a simple transformation of (1):
Vg,q,:max=mAy=1=1,. (L1)

&(a)
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Suppose given a mask ¥ = (V,..-,Yk»---Y,) and
objects g, = (my,1;) and ¢, = (m,,1,), such that

1 1 1 2 2 2
my = (0y.ee, Opyen, Oy)y My = (0 ,...,0lys...,0L,), and

Yo OL}C, OL,Z{ € [0,1]. The sum of digits of the binary num-
ber corresponding to the mask 7 is called the trace of

the mask, tr(y) = Z::I Y. and represents the number
of selected features. The k-th binary feature is said to
be distinguishing for the objects g, and ¢, if these
objects belong to different classes and oc}( # Oti , while
’Yk = 1.

Theorem 1. A problem is solvable over the set of prec-
edents if and only if, for every pair of objects belonging to
different classes, there is at least one distinguishing fea-
ture.

Proof. Let us write assertion (1.1) in the inverse
form, applying the above substitutions for m,, m,, and
X, and obtain (1.2):

Vag,g:4u#,
&(a)
1 1 1
= (04 AYppeees Op AVpseees Oy AY,)

(1.2)
2 2 2
F (O] AYpseees O AVpseens Oy AY,)
Two binary numbers are unequal if and only if they

differ in the value of one or several bits; therefore, we
rewrite (1.2) as

Vgug, L #EL= Jkio, Ay #=0n AT, (1.3)
O(a) l.n

The right-hand side of condition (1.3) can be satis-
fied only for y, = 1. Thus, the solvability implies the
existence of a distinguishing feature, which proves the
sufficiency of the assertion of the theorem. The neces-
sity follows from the inversion of the above sequence
of transformations, so that (1.3) implies assertion (1.1)

and, for x =2" —1, assertion (1). The theorem is
proved.

_ 2
rl(q)(a)’X) - N(N _1)

N-1 N i .
Z[:I Zj:M(l,- 1, = 1?Ink DO A YR O A Y-
Then the solvability of Z(d(a)) is equivalent to

r(9(a),x) = 1.

Problem Z(¢(a)) is regular if it is (1) solvable and
(2) all the problems in the neighborhood of problem
Z(®(a)) are solvable. Since the neighborhood of a
problem can be defined in various ways, we consider
the extreme case presented in Theorem 2.

Theorem 2. Suppose that the neighborhood of prob-
lem Z(0(a)) is defined as all the problems whose infor-
mation matrices are identical or are subsets of the infor-
mation matrix of the problem Z({(a)), while the matrices
of information may take an arbitrary value. Then the
problem is regular over the set of precedents ¢(a) if, for

Corollary 1. Let
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any pair of objects, there is at least one distinguishing fea-
ture.

Proof. The regularity criterion of problem Z({(a))
can be obtained from condition (1.3). The information
matrix of an arbitrary problem from the neighborhood
considered consists of the rows {m,,i = 1..|d(a)|} of the
information matrix Z(¢(a)), so that, for arbitrary
matrices of information, any two m, and m, in the
same problem of the neighborhood may correspond to
1, # 1,, while in another, to 1, = 1,. Therefore, to guar-
antee the satisfiability of the solvability condition for
an arbitrary problem from the neighborhood of the
problem Z(¢(a)), the right-hand side of condition
(1.3) should be satisfied irrespective of the fulfillment
of the left-hand side; i.e., condition (2) should be sat-
isfied for any pairs of objects from ¢(a):

¢\(V’)611342 113 k: OCL ANYr # 0‘2 A Yk
Condition (2) guarantees the solvability of an arbi-
trary problem from the neighborhood considered and,

hence, is a criterion of regularity of Z((0(a)) on the sub-
set of features 7y . The theorem is proved.
2

r(da),x) = m

N-1 N i i
Zizl ZFM (Elnk S0 AYy Z 0y AY,). Then the
regularity of Z(¢(a)) is equivalent to r,(¢(a),y) = 1.
Corollary 2. Condition (2) can be tested in subqua-
dratic time. “Direct” testing of the satisfiability of (2)

for a given mask y = (Y,,-.-,Yx»---Y,) 1S performed in

O(N 2), since it requires the analysis of %N (N =1

()

Corollary 1. Let

pairs of objects, N = |d(a)|. At the same time, the N
binary numbers {m; A %} can be ordered (for example,
in increasing order) by an effective sorting algorithm in
O(N -1In N). When condition (2) is satisfied, all
ordered numbers are pairwise different—the fact that
can be checked in time O(N).

The selection procedures of features have a signifi-
cant impact on the accuracy and specificity of recog-
nition/classification algorithms. Therefore, the meth-

ods of calculating the mask x € B" on the basis of the
solvability and regularity criteria are of significant
interest.

These calculations become practically feasible
when (1) one finds dead-end forms of masks and (2)
defines a certain “sensible” linear order of features
within the rows of the information matrix and, accord-
ingly, within the sought mask. The analysis of the
dead-end property within the combinatorial theory of
solvability [14—16] uses the ideology similar to that of
the theory of dead-end tests [19]. By dead-end masks
(for example, with respect to the solvability criterion
(1.3)) are meant those masks in which the “zeroing” of
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20 TORSHIN, RUDAKOV

any nonzero v, leads to the loss of satisfiability of this
criterion.

We will assume that the features in the rows of the
information matrix {m;} and, accordingly, in the mask
X = (Yis---»Yk»---Y,) are already ordered in accordance
with some method of determination of “informativ-
ity” of the features so that “more informative” features
correspond to smaller values of the rank of informativ-
ity, i.e., the values of k [14—16]. Then the choice of the
features appearing in the dead-end masks consists in
finding a distinguishing feature with maximum infor-

mativity for each pair of objects from ¢(a), a € (A;X .

Theorem 3. A mask ¥, = (Yi,...,Yr»..-Y) is dead-
end with respect to the solvability criterion if and only if,
Jfor every nonzero k-th position of the mask there is at

least one pair of objects in ¢(a), a € éX ,Jor which the k-
th feature is the only distinguishing feature among the
features with nonzero values of y}c in ;.

Proof. Suppose that the features in the mask , are
ordered according to some method of calculation of
the rank of “informativity” of the features. Define a
function K(i,j) that finds a feature with the minimum
position number k (i.e., with the maximum “informa-
tivity”’) that allows one to distinguish between the ith

and jth objects, i.e., K(i,j) = mink : OLZ * Oti. Let
0(a) be consistent, i.e., criterion (1.3) be satisfied for

x = 2" — 1. Then, one can calculate a mask y, < 2" —1
that also guarantees the solvability:

yL =(3(,J): K@,j)=k). This procedure finds a
d(a)
single distinguishing feature for every pair of objects,

and if, for some k', yL. =1, the objects are distinguish-
able, then new features with values k£ > k' are not
added to the mask ¥, .

Suppose that the k'-th feature, yi(. =1, found in

N+ objects by zeroing yL, isremoved from . By con-

struction, an arbitrary k'th feature is added to the
mask only if there is no feature with smaller value of k.
Conversely, features with values of k£ greater than &'
are added only if the features with & < k' are not dis-
tinguishing for a certain pair of objects. One or another
distinguishing feature is unique for a pair of objects

(i,j) only when Zk=1,n (a,®al) = 1L If
zk:l (OLZ ® Oci) > 1 for any Nk. objectsforany j # i,
then the zeroing of yL. does not lead to the loss of solv-
ability. When ZH (OL’,; @ o)) =1 at least for one,

ith, object from among N o objects for a certain value

of j # i, then the k'-th feature is unique for this pair of
objects and the elimination of this feature inevitably
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leads to the loss of solvability. In this case, y, will be
dead-end under the hypotheses of the theorem. The
necessity is proved by contradiction. The theorem is
proved.

Theorem 4. A mask  , is dead-end with respect to the
regularity criterion only if, for every nonzero position of
X, there is a pair of objects in the set of precedents for
which the k-th feature is the only distinguishing one.

The proof is analogous to the proof of Theorem 3.

Corollary 1. tr(y,) < tr(x,). The left-hand side of
condition (1.3), 1, # 1,, excludes the analysis of some
pairs of objects that are analyzed during the analysis of
condition (2). Accordingly, when calculating a dead-

end 7 ,, all the positions that are nonzero in the dead-

end y, and, possibly, additional positions necessary
for distinguishing additional pairs of objects will be
nonzero in this mask. In other words, the distinguish-
ing of arbitrary pairs of objects in accordance with the
condition (2) requires, in general, a greater number of
features compared with the distinguishing of objects of
different classes by (1.3).

It follows from Theorems 3 and 4 that the calcula-
tion of masks x, and  , requires the enumeration of all

pairs of objects, i.e., is performed in time O(Nz),
where N is the number of objects. Actually, all poorly
formalized problems considered in the present series
of papers belong to the field of “BigData” (since they
include from tens of millions to billions of objects each
of which is described by the values of millions of fea-
tures) and this requires the involvement of supercom-
puter technologies for calculating o, and ,. When the
number of features » is not much greater than the
number of objects N and the occurrence frequencies
of the features are low (a few percents of the value of
N), it becomes possible to significantly reduce the
computation time.

Theorem 5. Suppose that the matrix of information in
a consistent set of precedents O(a) consists of a single col-
umn, which corresponds to a problem with two classes,
C" and C7, N'=|C"l, N =|C7,
N =N"+N",and N* = N . Suppose that the occur-
rence frequency of an arbitrary kth feature in both classes

where

islow (n, < N and n, < N ") and the number of fea-
tures n is not greater than the number of objects, n = N .
Then a dead-end mask 7y, can be found in time much less
than O(N" - N7).

Proof. Consider a complete bipartite graph
G =K NN in which the left part corresponds to the

objects of class C " and the right part, to the objects of

class C. To every pair of objects (i, j) tested when cal-
culating 7, and y,, there corresponds an (7, j)-edge in
the graph G'. In the “original” graph K the k-th

N* N’
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feature corresponds to a subset O, = {g;,qz,...) of
n; vertices of the left part, a subset O, = {g;,,q2,--.)
of n, vertices of the right part, and the corresponding
subset of edges ¥, x ¥,. For a consistent set of prece-
dents ¢(a), the family of alls sets ¥, and ¥, covers all
N =N"+ N~ objects, and the family of all sets
¥y X 0 covers all the edges of K . .

After carrying out a test for every pair of objects
(i,)), we will remove the (i, j)-edge from the graphG so

that, after testing all (N ' - N ") pairs of objects, G
becomes a null graph. Let us carry out a test of the

solvability criterion on the set of precedents ¥, U ;.
When carrying out a test on the set of precedents

¥ Uy, it is necessary to calculate K(ij) for n; - m;
pairs of objects.

Note that the kth feature is not necessarily distin-

guishing on the set of precedents 1‘}; U U} ; the role of
distinguishing features is played by other ones. At the
same time, if the kth feature has already been chosen

as distinguishing (i.e., y}c =1), it certainly distin-

guishes all objects in ¥, UV, from all the other
objects of the set of precedents ¢(a), which implies the

analysis of N, =n (N —n)+n, -(N" —n))
pairs of objects. In other words, when some other, m-
th, feature is chosen as distinguishing when testing

solvability on ©; U 9, then this subsequently elimi-

nates the need to analyze N ,f "~ pairs of objects. There-
fore, upon carrying out the analysis of solvability for

all sets 9, U ¥, by ZZ:I n, -n;, G becomes a null

graph (i.e., a regular graph of degree zero, r(G) = 0).
Thus, in the case of a “direct” testing of objects in

¥, U Oy with all the other objects of the set of prece-

dents ¢(a), one should compare N, + n; - n; pairs of
objects, while, when testing the set of precedents

¥, U, of the distinguishing kth feature — only

n,:' - n, pairs of objects. If, after testing n, < n features,
the equality #(G) = 0 is satisfied at that moment then

the testing procedure Since n,j < N7,

n, < N and n = N by the hypothesis of the theo-

rem, here we obtain that an n,-ng <N"-N.
k=1

The theorem is proved.

stops.

Indeed, suppose that the hypothesis of Theorem 5
is satisfied and n; <V, N, 1y <V N, and

V. < 0.05. This is a typical case, for example, for
problems of bioinformatics [14, 16], where the occur-

max

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 27

rence frequencies of binary features (“motives in
amino acid sequences”) do not exceed a few percents.

n, —_ — —
Then, zk'iln,:-nk <nd-vfnaX~N+-N <N"-N".

Therefore, under the condition n; < 1/v fnax, the pro-

cedure described will be certainly computationally
more effective than the “direct” testing of the condi-
tions (1.3, 2) over the set of precedents ¢(a).

Thus, Theorems 3-5 allow one to calculate dead-
end masks that include features with maximum infor-
mativity and guarantee the criteria of solvability (1.3)
and regularity (2) of the corresponding problems.

Note that the conditions (1.3) and (2) were
obtained for binary features. It is important to note
that the solvability and regularity criteria obtained
within the factorization approach can be generalized
to the case of an arbitrary collection of features (not
only binary, but also numerical and “categorial”). We
will distinguish between the above-mentioned binary
factorization and partial factorization; in the latter pro-
cedure, for each feature, equivalence classes of the val-
ues of features are introduced: intervals of values of
numerical features, subsets of values of “categorial”
features, and so on.

Let 7, be a set of values of the kth feature. A partial
factorization consists in introducing binary functions

S, (v, vy : 1 ,f — [0,1] for the kth feature, which test

the membership of two values v, v, of the kth feature
in the same equivalence class of features
(84(vy,v,) = lif v|,v, belong to the same equivalence
class). Specific methods of determining §,(v,,v,) are

restricted by the framework of the relevant task-ori-
ented theory.

Under the condition of partial factorization, it
becomes possible to generalize the definitions of the
criteria of solvability (1.3) and regularity (2), thus
obtaining the solvability (1.4) and regularity (2.1) crite-
ria  for  heterogeneous  feature descriptions

My = (Qsenes Py @), O € 1

¢V)611,Qz L EL D Tk 8,000 AV =1, (1.4)
(a 1..n

Vg, 3k =8, (P00 AT =1.  (2.1)

o(a)
A method for calculating the values of the corre-
sponding functionals r(d(a),y) and r(d(a),y) for
problems with heterogeneous feature descriptions fol-

lows from the conditions (1.4), (2.1) and from the
above-mentioned definitions of the functionals.
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4. CORRECTNESS AND COMPLETENESS
CRITERIA FOR ALGORITHMIC MODELS
WITHIN THE FACTORIZATION APPROACH

In itself, the criteria of correctness of algorithms
and completeness of an algorithmic model formulated
below do not require binary or partial factorization.
However, the criterion of the completeness of an algo-
rithmic model necessarily implies that the sets of prec-
edents considered are regular. Therefore, it can be said
that the criteria formulated further are obtained within
the “factorization approach.”

Let I, c I, xI,x...xI,x...xI,, where [, is a
set of values of the k-th features. The correctness of

the algorithm A,(0): /1, — I, or the algorithmic
model M ,[©,1,] = {4,(0)} implies that the algorithm
and/or the model strictly corresponds to the local
constraints (i.e., to some set of precedents ¢(a)).

Suppose that the algorithm A4, is a function of sev-
eral arguments, namely, the initial information

m; € I,, the parameters of the algorithm © € R", which
represent the “internal settings” of the algorithm, and

a mask ¥ = (Y,---, Y----Y,) Which describes the fea-
tures selected. Note that, in a number of cases, the
parameters ¥ and 6 can be interrelated. For example,
if the vector O reflects the “weights of features,” then

0]k] = 0 corresponds, effectively, to v, = 0.

Within the framework of the formalism developed,
the universal constraint / is symmetric, so that the
order of elements of the set ¢(a) is arbitrary [13]. Then
the criteria of the correctness of the algorithm A,(m,,0,%)

and the correctness of the algorithmic model M A[(:)] are
defined as follows:

Y (m;,\,) 2 A,(m;,0,%) = 1;, 3)
o(a)
vV A,©,,%,) (Y (m,) 0 A(m,0,,%,) =1,). (3.1)
M 4[O] o(a)

Based on the criterion (3), we can define a combi-

natorial functional r;(¢(a),A,), which characterizes
the “degree” of satisfiability of the criterion for spe-

cific 0(a), Ay, x> and 0:

N

ry(0(a), 4, (X, 0)) = % 2(A,(m;,0,%) =1,), so that the

i=1
correctness of the algorithm A,(,0) over the set of

precedents ¢(a) corresponds to r;(¢(a), A4,(x,0)) = 1.
Similarly, criterion (3.1) corresponds to

@) M AOD = 3 (0@, Ay 0,,0,)) =

H =|M ,[©], and the correctness of the algorithmic
model, to ry,(¢(a), M ,[O]) = 1.
Definitions (3) and (3.1) obviously imply

PATTERN RECOGNITION AND IMAGE ANALYSIS

Theorem 6. The solvability of problem Z({(a)) is a
necessary condition for the correctness of any algorithm

and any algorithmic model. It is clear that all A, in
M , = {A,} are functions.

Corollary 1. It follows from r(d(a),y) =1 that
n(da),y) =1.

Instead of the correctness of the algorithmic model
(3.1) a more general concept of completeness of an
algorithmic model was developed in the algebraic rec-
ognition theory [1—6, 10—13]. Amodel M A[(:)] iscom-

plete if, for any regular problem, the model M A[C:)]
contains a correct algorithm [13]. In other words, a
model possessing the property of completeness pro-
vides at least one solution to the regular problems ana-
lyzed.

Within the formalism developed, the regularity of
problems is a natural property for the analysis of
poorly formalized problems. For instance, the first
step in the formalization of a problem is the choice of
the form of the axiom of correspondence, i.e., the
choice of fundamental constraints imposed on the
“formalizing” mapping ¢. The strong form of the
axiom of correspondence is closely related to the reg-
ularity of the sets of precedents analyzed [10].

Let us take a set of initial description of objects X,
a sampling operator @, and a formalization method 0,
such that all samples in é,X correspond to regular

problems for a unit mask, i.e., Va : r((a),2" —1) =1.
X

Then the criterion of completerness of the algorithmic

model M A[@] on the set of regular samples é,X is
obtained from (3.1) by the substitutions of samples

from é,X:
Va 3 A,0,x: V(m,1):A,(m;,0,,%,)=1,).(4)

Lx M, 0] o(a)

The combinatorial functional m(@,X M A[@]) that
corresponds to (4) and whose value is unity for com-

M 6] s
s A 1 Y
(X, M ,[O]) = ;Zy:1 (max r(,), 4,)),

Y =|C,X|.

A mask x;(d(a),0,,A4,) is said to be dead-end for
the correctness criterion if the zeroing of an arbi-
trary position of the mask %, leads to the violation
of  condition (3). A set of  masks
Y4 = 3(0a),0,,4,),h=1..H H=|M,[O]} is said
to be dead-end for the satisfiability of the complete-
ness criterion if the removal of an arbitrary mask from

X4 violates the satisfiability of (4). For fixed 0,, 4,,

x3(®(a),0,,4,) and y, can be calculated by iterative
zeroing of the positions of the initial unit mask.

plete calculated as  follows:
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Completeness of model M A[C:)] = correctness A, € M A[(:)]

U U

regularity of problems = solvability of problems = T — sufficiency of feature descriptions

Fig. 1. Hierarchy of the combinatorial criteria.

Note that, in contrast to the solvability/regularity
criteria of problems, the satisfiability of the criteria of
the correctness of algorithms (3) and the completeness

of the model M A[(:)] (4) depends not only on the set of
precedents ¢(a) and the mask , but also on the defi-
nition of 4, and on the values of the vectors of param-
eters 6, (i.e., on the method of calculation of the vec-

tors of parameters, (:)). Therefore, a combinatorial
analysis of the dead-end property of the mask y with
respect to criterion (3) and, the more so, criterion (4)
cannot be carried out without regard to the values of

0, and the specific definition of A4,,.

Thus, there is a certain hierarchy of criteria within
an algorithmic model (Fig. 1). According to the com-
pleteness criterion of an algorithmic model (4), the
completeness of the model implies the correctness of
the algorithms of the model, and the correctness of an
algorithm implies the solvability of the corresponding
problems (Theorem 6). The completeness criteria (4)
also imply the regularity of the problems.

In this case, the regularity occupies a special place
in this hierarchy. First, regularity is the property of
problems that guarantees the satisfiability of the solv-
ability — the necessary condition for both correctness
and completeness. Second, it follows from the regular-
ity of problem Z(¢(a)) that there exists at least one
correct algorithm (the tabular value of the function

A,). At the same time, the regularity of Z(¢(a)) does
not guarantee the correctness of the algorithm 4,.

The weakest condition in this hierarchy is the nec-
essary and sufficient condition, obtained in [10], for
the existence of a topology over the set of feature
descriptions of objects, which can be called a “t-suffi-
ciency of the set of feature descriptions”, a “t-crite-
rion”, etc. Without satisfying the T-criterion, there can
be no question of the satisfiability of stronger criteria
in the hierarchy.

A given hierarchy of criteria should correspond to
the hierarchy of appropriate subsets of features. In
particular, to satisfy the regularity criterion, one needs
more complex masks than those for satisfying the solv-
ability criterion (Theorem 4). It is intuitively clear
that, to satisfy stronger criteria of correctness, and, the
more so, of completeness, one may need still more
complex masks (i.e., masks with the greater values of
the traces). A constructive analysis of this question
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becomes possible when carrying out a cross-validation
analysis of the criteria obtained on real samples of
descriptions of objects.

5. CROSS-VALIDATION ANALYSIS OF THE
SOLVABILITY, REGULARITY, CORRECTNESS,
AND COMPLETENESS CRITERIA WITHIN
THE FACTORIZATION APPROACH

According to the cross-validation paradigm, the
criteria of solvability, regularity, correctness, and
completeness should be applicable not only to one
specific problem (defined by a fixed set of precedents

®a), ae CX ), but over the whole collection of sam-

ples éX . Among the criteria (1) — (4) obtained above,
a collection of samples appears only in criterion (4).

Empirical procedures of cross-validation and
“sliding control” are used in computer science for
controlling the overfitting of some “end-point” spe-
cific algorithms (literally — for specific programs for
computers with pre-fixed values of parameters). In
this case, one often does not consider the nature of
overfitting of algorithms and puts the main focus pre-
cisely on the solution of the problem of computational
efficiency, the correspondence of the procedures to
one or another “accuracy” criterion, and so on. These
technical questions are indeed very important,
because the practical calculation of functionals of
complete sliding control seems to be hardly possible
[18].

At the same time, the analysis of the general struc-
ture of parametric algorithms A4,(6,y) and of the cor-

responding models M , [(:)] shows that overfitting may
arise for quite diverse reasons: (1) certain peculiarities
of the construction of the algorithm A,; (2) inade-
quate choice of the values of the vector of parameters
6 of the algorithm (among other things, due to some

peculiarities of the method O used for calculating the
vector 0); (3) inadequate procedure of selection of fea-
tures (i.e. procedure of calculation of the mask y); (4)

incompleteness of the model M A[(:)]; (5) some pecu-
liarities of the actually analyzed sets of precedents,
even if they correspond to solvable/regular problems,
and so on.

The separation and quantification of the sources of
overfitting presents most complicated problem, both
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theoretically and computationally. The cross-valida-
tion forms of the criteria of solvability, regularity, cor-
rectness, and completeness formulated below are
important tools and allow one to get at least the most
general overview of the problem from the viewpoint of
algebraic theory of recognition.

For convenience, we will consider a homogeneous
parametric algorithmic model

M ,[O] = {A4,(0,,x)6}, h =1,...,|M ,[6] in which the

vectors of parameters 0, of the algorithms have iden-
tical range of values (and, accordingly, dimension),

the values of 6, for all algorithms being calculated by a

unique method defined by the operator ©. The masks

of selection of features %, in the homogeneous para-
metric model are also calculated uniquely for all algo-
rithms of the model, so that each algorithm corre-

sponds to a single vector 6, and a single mask % ,. A
generalization to the case of inhomogeneous paramet-

ric models is made by defining © as a set of several

methods for calculating 6, and is out of the scope of
the present study.

In practice, the parameters of the algorithm can be
calculated using a set of precedents (for example,
“weights” of features, parameters of a hyperplane,
regression coefficients, etc.) or are specified directly
by the experimenter (for example, the maximum com-
plexity of conjunctions and disjunctions in the method
of logical rules, the dimension of the hyperspace, the
complexity of the regression formula, etc.). We will

assume that the definition of the operator O takes into
account both variants of parameters, so that, as a
result, both variants of the parameters are the compo-

nents of the vector 0.

Cross-validation scenario implies the “learning” or
“setting” of an algorithm by one, “learning”, sample
and testing of the set algorithm by another, “control”,
sample. In the case of a homogeneous parametric

model M A[@], the “learning” consists in calculating
the vector of parameters 6, and the mask of the selec-
tion of features 7 ,. The calculation of 6, by the set of
precedents ¢(a) by 6 will
0(0(@)) = O%(a), a e LX.

On the basis of the set of precedents, a mask can be
calculated as, for example, the dead-end mask ¥,
(Theorem 3), which guarantees solvability, as the
dead-end mask Y ,, which guarantees regularity (The-
orem 4), or by other methods. We will write the result
of calculation of a mask x by ¢(a) as y(¢(a)), and the
result of calculation of the k-th element of the mask, as

Y (0(a)).

be expressed as

PATTERN RECOGNITION AND IMAGE ANALYSIS

6. CROSS-VALIDATION FORMS
OF THE CRITYERIA OF SOLVABILITY
AND REGULARITY OF PROBLEMS

Theorems 3 and 4 allow one to calculate dead-end
masks, which include features with the maximum pos-
sible informativity (i.e., minimal value of rank of
informativity, see above) and guarantee the fulfillment
of the solvability and the regularity criteria of the cor-
responding problems. The statements of Theorems 3
and 4 imply, first, the application of heuristic estima-
tion functionals of informativity of features (which
allow to calculate the ranks of informativity) and, sec-
ond, the arbitrariness of the assignment of the value of
the rank in case when functional of estimation of
informativity produces different ranks for the features
with similar informativities (this problem is considered
in greater detail in [14—16]).

The values of the heuristic informativity estimation
functionals may significantly differ for different sam-
ples of objects; thus leading to a change in the linear
ordering of features “by informativity” when using

various samples from the set of samples éX under test.
Accordingly, the values of the function K(i,j) for iden-
tical pairs of objects will also differ for different sam-
ples. For equal values of the informativity estimation
functional, features with identical informativity are
assigned different ranks of informativity, which
implies the violation of the linearity of the ordering.

For these and other reasons it is quite possible that

for different samples a € @X one will obtain the differ-

ent masks x,(d(a)) and y,(¢(a)). The cross-validation
Jorms of the solvability criterion reflects the necessity of
“cross” checking on pairs of different sets of prece-
dents:

ya’baaibvqlan:ll ¢l2
tx o(a) 1_5)
= 3k: —8,(Or, O1) A Y (0(B)) = 1.

The combinatorial functional corresponding to
(1.5) can be expressed with the use of the functional

: Pxy— 1
> na) @), ¥ = X,

The functional rk,(éX ) corresponds to testing (1.4)
on pairs of samples “learning”—"control,” the func-

. s 1 ~—~Y N
tonal - (CX) = n(@a),x,(®@)),¥ =ICX],
estimates the results of testing on a single, “learning,”

sample, over all samples in the set éX . Within the
cross-validation paradigm, the difference

r,,(éX )— r,c(@)( ) describes some “overfittedness”
related to the algorithm for calculating (), i.e., to the
selection procedure of features on the basis of the solv-
ability criterion.
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Note that in practice it is more expedient to use not
so much the functionals r,c(éX ) and rl,(éX ) them-
selves, but the corresponding empirical distribution
functions (EDFs) of the values of the functionals #.
Define sets A {r1(¢(a[),xl(¢(aj)))|aia
a;e (X,a; # a;} and Ay, =
{rn(@a;), x1(0(a,)))la; € CX}. Define §(x) — the opera-
tor of formation of EDFs by the set A c R as
®(x)A =supl{B c AlVae B:a<x}/|A,xe R (for
short, we express “@(x)4” as “pA”). Then the func-
tionals rl,_,(@X ) and rl,(iX ) are the mathematical
expectations of the EDFs ¢A4,. and ¢A4,,, and the dif-
ference between these EDFs can be more accurately
characterized by the methods of nonparametric statis-
tics developed by Smirnov and Kolmogorov [20—22],

rather than simply by the value of the difference of the
mathematical expectations.

By analogy with (1.5), we obtain a cross-validation
Jform of the regularity criterion:

Vaba#bV q,q,: k: —|6k((p}€,(pi) AYe =1,
ex o) 1.n 2.2)

corresponding to the EDFs ®A4,, and ¢A4,, and the

functionals rzc(éX ) and r2,(ZA;X ), which are calculated
by the values of the functional r,(¢(a),%). The differ-

ence rzl(éX ) — r2(_,(éX ) characterizes “overfittedness”
when selecting features by calculating %, ().

7. ON THE REPRODUCIBILITY
OF THE SELECTION OF FEATURES
UNDER CROSS-VALIDATION TESTING
OF THE SOLVABILITY/REGULARITY
CRITERIA

The r(€x) - n.(€x)

rzl(éX )— rzL,(éX ) characterize some general “overfit-
tedness” related to the procedures of selection of fea-
tures. When carrying out a combinatorial analysis of
solvability/regularity, of special practical interest is a
more particular factor — reproducibility of the selec-
tion of the specific separate features in the framework
of cross-validation testing.

differences and

Let ¢ be a mask calculated as a result of applica-
tion of some procedure of selection of features on
a set of precedents ¢(a) (for example, it can be the

x,O) or the y,() mask), so that
X(0(@) = (7,(¥@),.... 7 (¥a)),..Y,(§(a))).  When
calculating y by all Y = |EX| samples of the set (X,

one obtains a set of masks x(iX ) = {x(d(a))a e ZzX ).
Let %(yx) be a combined mask of the set of masks %,
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Xl =18x1=Y,

OO = (VY Tieees ¥ Visees Y ViV Voo V) € X)-
Theorem 7. The combined mask ¥(y) guarantees

the satisfiability of cross-validation forms of the solvabil-

ity (regularity) criterion on the set of samples éX if and
only if, for a given formalization method ¢, criterion (1.4)
(criterion (2.1)) is satisfied for every sample in the
set éX .

Proof. Consider the case of the solvability criterion
(1.4); the proof for the regularity criterion (2.1) is anal-
ogous. The combined mask % (x) includes all the fea-
tures marked by nonzero elements of masks from y . If
(1.4) is satisfied for every y(d(a))e x(CX),ae X,
then it is certainly satisfied for the combined mask.
Hence, in the case of an arbitrary ¢(a), the combined
mask contains all the positions y(d(a)) that guarantee
the solvability of Z(¢(a)). Thus, for an arbitrary pair of
sets of precedents ¢(a), &(b), a,b € éX , X(x) contains
the positions x(d(a)) and x(d(b)), which guarantees
the satisfiability of the cross-validation criterion (1.5)
provided that criterion (1.4) is satisfied for all ¢(a),

ae @X . The theorem is proved.

By Theorem 7, the mask () guarantees the cross-
validation satisfiability of the solvability/regularity
criteria if the feature descriptions and the above-

described procedures of calculating %,() or x,() are
sufficient for the satisfiability of (1.4) and/or (2.1) for
the sets of precedents derived from the individual sam-

ples in {X. The reproducibility of the sets of features
obtained under cross-validation testing can be esti-
mated by comparing various characteristics of the
mask ¥(y) and of the elements of the set .

The most general characteristic of an arbitrary
mask is its trace. Therefore, the set of traces

trx(éX ) = {tr(ly € x(iX )}, the corresponding EDF
(T)trx(éX ), and the numerical functionals of the EDF

(Aptrx(éX ) characterize the degree of differences of the
elements of ¥ from each other. It is clear that the

closeness of the values of traces in trx(éX ) to the value
of trace of the mask ¥(y) points to the high reproduc-
ibility of the selection of features.

Let us evaluate the contribution of individual fea-
tures to the implementation of solvability/regularity

property in cross-validation. A occupancy z, of the k-
th feature is a fraction of the number of samples from

CX in which this feature figures as a distinguishing
one,i.e.,z;, = %Z; Ye(0(a,)), a; € éX. The value z;,
= 1 indicates that the k-th feature is distinguishing on
an arbitrary ¢(a), a € (X, and z,=0 indicates that the
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k-th feature is never a distinguishing one over all ¢(a),

ae éX . Apparently, features with the maximum occu-
pancy (z, = 1) are of particular interest for the con-
struction of the correct recognition algorithms.

When calculating y,() and 7 ,(), to increase the val-
ues of occupancies one should redefine the function
K(i,j) (see Theorem 3) so that, for an arbitrary pair of
objects, K(i,j) calculates the number of the equiva-
lence class of informative features rather than the value
of k (i.e., the informativity rank of the feature).
Accordingly, in the calculated mask (be it y,() or

%x.()), all the features corresponding to this equiva-
lence class has to be marked. Then, the occupancy of
features in the corresponding positions in the mask
(%) will be significantly higher (although in this case
there can be no question of the dead-end character of
the masks calculated in this manner). Nevertheless,
the masks thus obtained will be, in a sense, “mini-
mal”: they will correspond to the selection of more
informative features.

8. CROSS-VALIDATION FORMS
OF THE CRITERIA OF THE CORRECTNESS
OF ALGORITHMS
AND OF THE COMPLETENESS OF MODELS

The satisfiability of the criteria (3) and (4) depends
on the set of precedents ¢(a), the mask , the method
of definition of 4,,, and the vector of parameters 0. In

a homogeneous parametric model M A[(:)] , the value of
an arbitrary vector of parameters 0 is calculated on the
basis of some ¢(a) as 8 = Od(a). The masks used for
selecting features are also constructed over a certain
set of precedents so that y = y(¢(a)). In this case, for
one algorithm A4,, it seems expedient to calculate y
and 0 by one set ¢(a), otherwise the accuracy of the
algorithm will be certainly reduced on both “learning”
sample and in cross-validation. Accordingly, for a
given method O of calculating the vector of parame-
ters, the cross-validation criterion of correctness of an

algorithm is expressed by the application of the corre-
sponding substitutions to condition (3):

V oa#bV(m,\): A,(m(¥a)),
a,beCX . O(a) (32)
O0(6), x(9(b))) = ;.

Accordingly, one also obtains combinatorial
functionals that characterize the “degree” of satis-
fiability of criterion (3.2) on “learning”

(4, 8X) = 237 (6@ Ayx(@). ©a))

&y _ 1
(4,80 = L

@), 4a,), 0a)), ¥ = (LX) Just

and

on “control”
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as in the case of functionals rlc(éX ), rzC(@X ), etc.,
instead of r3,(Ah,éX) and r3c(A,,,éX), one can use
EDFs over the sets {r3(¢(a,-),Ah(x(a,),(:)a,.))} and

{r3(¢(ai)aAh(X(aj)agaj))“ * ./}’ l:.] = la---aY-

The commonly used criteria for the cross-valida-
tion estimation of the “accuracy” of algorithms are
based on various combinations of sensitivity (“true
positive rate”, “recall”, and in a problem with two

classes, the fraction of objects of class C ") and specific-
ity (“true negative rate” and the fraction of objects of

class C") of the algorithms. The criterion (3.2), thus,
is a full-fledged functional of sliding control that
reflects the fraction of correct answers of the algo-
rithm in both classes (i.e., the values of r;()).

The completeness criterion (4) already possesses a
cross-validation structure because it involves the test-

ing of samples of a regular {, X . However, in this case
one evaluates the application of the algorithm only to
“learning” samples. Accordingly, the cross-validation
Jform of the completeness criterion of a homogeneous

parametric algorithmic model M , [C:)] involves testing of
algorithms on “control” sets of precedents after setting
the parameters using the “learning” sets of precedents:

Vaidbzd 3 A,
gx Cx M (6]
s (V(m, ) 2 Ay(m;, ©00), x(0(D))) = 1,).
d(a)
The cross-validation completeness of a homoge-

4.1)

neous parametric algorithmic model M A[(:)] implies
the presence of samples in a set of regular samples,

@,X , using which one can calculate the mask x and
the vector of parameters 0 in such a way that at least
one of the algorithms A,(x,0), A =1,...,|M A[(:)]|, will

be correct. The functional r4(é,X M A[é]) earlier
obtained already characterizes the “accuracy” of the
algorithm “on learning”, and the combinatorial func-
tional corresponding to criterion (4.1) differs from the

functional 7,() only in that it prohibits the testing of
e XM 16]) = 2

r((a,), A,(O0b), x(0(b))),a, #b),

“learning” samples:

ZY (  max

Y=L g e M 101568, X
Y =[C.X|.

Theorem 8. The cross-validation correctness of an
algorithm A, is sufficient for the cross-validation com-
pleteness of all algorithmic models that include this algo-
rithm if and only if the set of samples considered is regular
and the strong form of the axiom of correspondence holds
Jfor the formalization method ¢.

Proof. Indeed, under criterion (3.2) over some set
of samples @X for an arbitrary ¢(b), be éX , one
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obtains (:)q)(b) and x(d(b)) that guarantee the correct-
ness of the algorithm A,,. Hence, when A, with param-

eters in (:)(])(b) and y(¢(b)) is included in an arbitrary
algorithmic model, in this model there is an algo-
rithm, correct over the sets of precedents over the set

of samples éX . The condition of the completeness of
the model is satisfied only when all samples in the set

éX are regular (that is, @X = é,X ), and, when the
strong form of the axiom of correspondence holds for

each of the samples in éX , this set contains only regu-

lar samples. Thus, all ¢(b), b€ ZZX , are regular, and
the fulfillment of the condition (3.2) over the

o(b), be {,X implies that criterion (4.1) is true. The
theorem is proved.

According to Theorem 8, over regular sets of prec-
edents, the cross-validation criterion of correctness of
an algorithm is a stronger condition than the com-
pleteness (4.1) of some model including this algo-
rithm. In practice, “ideal” algorithms of this kind are
quite rare, since the strict fulfillment of (3.2) implies
the zero overfittedness of the algorithm (i.e., for learn-
ing on an arbitrary sample, 100% accuracy is achieved
on control).

CONCLUSIONS

In this study, we have obtained constructive com-
binatorial criteria of the solvability/regularity of prob-
lems and the correctness and completeness criteria for
algorithmic models that admit cross-validation testing
on the samples of descriptions of objects. The satis-
fiability of the solvability/regularity criteria depends

on the set of samples éX , the method of formalization
of problems ¢, and the method for calculating the
masks of selection of features (). The satisfiability of
the correctness and completeness criteria depends on
all these parameters and, in addition, on the algo-

rithms A, of the homogeneous parametric model

M, [(:)] and the method O for calculating the vectors of
parameters of algorithms.

The presence of a hierarchy of the criteria obtained
implies an obvious general approach to the analysis of
poorly formalized problems. First, one finds all meth-

ods of formalization ¢ over the set of samples éX that
lead to the fulfillment of the condition of T-sufficiency
of the set of feature descriptions. From among these
methods, one selects those that guarantee the fulfill-
ment of the solvability/regularity conditions. Then,
one carries out an analysis of the completeness of
homogeneous parametric algorithmic models under
test, which includes the analysis of the correctness of
individual algorithms. The results of the analysis,
including empirical estimates of overfitting, are repre-
sented by the values of combinatorial functionals
obtained in the present study.
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For the experimental cross-validation testing of the
criteria obtained, one should introduce certain factor-
ization methods, methods of estimating the informa-
tivity of features, methods of determining the equiva-
lence classes of features by informativity, etc. Within
the formalism developed, it seems adequate to select
these methods on the basis of the metric approach to
the analysis of given poorly formalized problems — the
approach considered in the second part of the present
article.
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