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Abstract—An interpretation of the problem-oriented theory developed is given from different perspectives of
quantum chemistry. It is shown that the results obtained within the developed formalism correspond to the
solution of the single-electron Schrodinger equation on molecular fragments, to the additive scheme of elec-
tron density calculation in the density functional theory, and to the correction of the integrals of overlapping
in the molecular orbital theory. The algorithms based on the developed formalism were tested on a sample of
134 thousand molecules, for which the highest occupied molecular orbital (HOMO) energy, the lowest unoc-
cupied molecular orbital (LUMO) energy, the HOMO—-LUMUO gap energy, the rotational constants, etc.,
were calculated by the B3LYP/6-31G(2df,p) method of quantum-mechanical calculations. The cross-vali-
dation testing of linear and nonlinear models has resulted in rank correlations between calculated and exper-
imental values within a range of 0.67—0.85. In this case, the speed of calculations by the developed algorithms
is higher than for quantum-mechanical calculations by eight orders of magnitude. The developed algorithms
can be used for large-scale screenings of molecules when solving the problems of molecular pharmacology

and materials science.
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INTRODUCTION

In the first part of this paper [11], a scheme for
additive prediction of numerical values on the basis
of initial chemograph descriptions was developed.
The application of ideology of chemometric analysis
in the form of matching pairs of metrics over a set of
chemographs has allowed us to formulate the prob-
lem of generating the synthetic features of chemo-
graphs in the form

|X| | n

arg min X D o KkIBX,, It @ [KIBLX,, Ix - T,,[. (1)
N =l k=1

fo}

where 7,, is the value of the predicted kth numerical
variable for object X,,, ®, is the weight of chemoin-

variants, and the expression f[k]ﬁ describes the
method used for the generation of invariants for the
description of chemographs [11]. In addition, let us
consider the interpretations of obtained results from
the perspective of chemical bonding theory, the sin-
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gle-electron approximation to solution of the
Schrodinger equation (SE), and molecular orbital and
density functional theories.

1. INTERPRETATION OF RESULTS
FROM THE PERSPECTIVE OF CHEMICAL
BONDING THEORY

The set of y-invariants, into which the given
x-graph vertex corresponding to one of the atoms in a
molecule is involved, describes a certain local context
of this atom in a molecule as a connected -graph’s
subgraph, the edges of which correspond to the cova-
lent bonds between the atoms. The descriptor of the
nearest context of an atom is a ¥-node, and the set of
all the chains, which have fixed length m' and pass
through the x-graph’s vertex, describes the order
m'-vicinity of the atom.

In the chemical bonding theory, which is a com-
posite of quantum-mechanical (QM) and classic
notions, an efficient approach to the description of
geometry for the local surrounding of an atom is the
calculation of hybrid atom states, which can be used

for the generation of alphabet Y and dictionaries ¥, Y.
Over the set of -chains a c ¥ and the set of y-nodes

Kk C Y, there are yx-fragments m =fi, kU f, o,
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|| = n, and the set of x-invariants v, = ffi; ' U Bji;'x
is formed. Weights ®, in Eq. (1) correspond to the
summation of a molecule property (characterized by
the kth target variable) over y-fragments (each of
which is characterized by a certain contribution to this
property). Correspondingly, Eq. (1) entails two
hypotheses about the molecule “structure—property”
interrelation.

Definition 1. Additivity hypothesis: an entire mol-
ecule’s property is the sum of contributions from
x-invariants, each of which corresponds to a mole-
cule’s y-fragment.

Definition 2. Fixed contribution hypothesis: each
x-invariant makes an identical contribution to the
studied properties into all the molecules that contain
the corresponding % -fragments.

2. INTERPRETATION IN SINGLE-ELECTRON
APPROXIMATION TERMS

The adiabatic SE approximation (see Eq. (1.2) in
[11]) implies that internuclear interaction term V,,(R)
is fixed for given nuclear configuration R because the
nuclei have a negligible small motion velocity as com-
pared to the electrons. Correspondingly, the coordi-
nates of nuclei R are steady-state SE parameters. The
single-electron approximation implies the further
simplification of the Hamiltonian form by revising the
method of accounting for interelectron interaction
term V,,: it is assumed that interelectron interaction is
approximated by the sum of single-electron operators
(so-called Hartree—Fock approximation).

In the single-electron approximation, y-function
Y(r,R) of a molecule is sought in the form of a product
of “single-electron” w-functions like P(r,R) =
H_ll),(Fi,R) such that every {,(#%,R) is a solution for

the problem about the motion of a single electron in
the field of all the nuclei, i.e., a solution for the “sin-
gle-electron SE”:

Iy (7, R) = ey, (7, R),
2h A, - ZR: V),
z (h] Ek - zelka

where V(i) is the single-electron term of potential
energy, i.e., the average electrostatic field acting on the
ith electron from the other electrons in a molecule,

l?f = )

and V(i) = IZ L Every single-electron function

V, mustbe a solutlon of Eq. (2) on the condition that

functions ,, are normalized and linearly indepen-
dent [5].
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In practice, eigenfunctions v, , in Eq. (2) are pre-
sented in the form of a determinant composed of sin-
gle-electron linearly independent functions (the so-
called “Stater determinant”). Such a form for the
solution of Egs. (2) is due to the need to meet the
quantum mechanics postulate that electrons are indis-
tinguishable [11].

The single-electron approximation is reduced to
the approximation of the precise electron Hamilto-
nian by the sum of single-electron operators the Fock-

ians ﬁ, Correspondingly, the energy of a system is
written as the sum of the Fockians’ eigenvalues; i.e.,

Z e; - Although Fockian h, incorporates coor-

dlnates of all nuclei R similarly to the procedure of cal-
culating the field, which acts on a single electron, the
motion of electron will be influenced only by the near-
est nuclei with an increase in the size of a molecule. In
other words, the larger a molecule, the more adequate
its representation as a set of localized fragments.

Accepting the hypothesis that an electron is pre-
dominantly delocalized around local structural frag-

ments, Fockians /4 and single-electron y-functions
V. (7,R) can be written as sums over the local struc-
tural fragments of a molecule, i.e., over the local sub-
samples of atomic nuclei as subsets of joint vector R.
The latter corresponds to the summation of mole-
cule’s properties over y-fragments in problem (1). In
other words, the y-fragments in prebasis U(X) corre-
spond to a certain set of single-electron wave func-
tions, the linear combinations of which lead to the
summation of eigenvalues over x-invariants, and this
corresponds to the fulfilment of additivity hypothesis
(Definition 1).

3. INTERPRETATION IN MOLECULAR
ORBITAL THEORY

Molecular orbital theory considers only the orbitals
of valent electrons in the atoms composing a given
molecule. For example, a molecular orbital may be
presented as a linear combination (LC) of atomic
orbitals (AOs). This assumption is associated with
Fockians (2) corresponding to hydrogen-like y-func-
tions at large (several angstroms) and small (fraction of
angstrom) distances [1—5].

The LCAO approximation of molecular orbitals is
rather convenient from the analytical perspective, as
the orbitals of an atom, being the eigenfunctions of the
Hermitian operator (atomic single-electron operator),
are orthogonal to each other, thus enabling the total
energy of a molecule to be approximated by the sum of
energies over the orbitals of valent electrons. The fol-
lowing step in molecular orbital (MO) theory is the
Vol. 32
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construction of a molecular orbital for the entire mol-
ecule as a linear combination from the orbitals of indi-
vidual fragments [12].

Let a random MO Y be presented as ¥ = zi o\,

Substituting this linear combination into the expres-
sion for calculating the average value of a physical
parameter (see Postulate 2 in [11]) and introducing the
normalization condition for ¥ for a pairwise nonor-

thogonal 1;, we obtain

PRI
A=GL—,
Z Z ¢Sy
i

where 4; = | \pizzlw ,dx is the matrix elements of the
R

3)

operator for the calculation of a physical parameter

(e.g., Hamiltonian) and S; = | | W,y dx is the matrix
&

elements of the overlapping of y-functions (so-called
“overlap integrals”), which characterize the degree of
interelectron interaction for the functions ;. If each
of the functions ), characterizes one or another AO of
the ith atom in a molecule, the matrix (S;) can be
unambiguously associated with an incidence matrix
(m;(X)) of a chemograph X. In other words, incidence
matrix (m (X)) is a factorization of matrix (S;), in

which higher values of overlapping integrals S; corre-
spond to higher weights of edges m;;. The latter implies
that there is an interrelation between the overlapping
integrals and the x-invariant “weights” adjusted when
solving machine-learning problem (1).

For orthogonal {; and {;, §;; = 0. Within a single
molecule, orthogonality is tested directly (when ana-
lytical expressions are known for all \, and ;) or indi-
rectly (as the orthogonality of y-functions is identical

to the distinguishability of their effects after inclusion
into a LC).

To analyze the orbital overlapping effects from the
perspective of chemograph theory, let us admit that
there exists a finite, but rather large, set of chemo-
graphs X, in which x-fragments corresponding to one
x-invariant can be encountered in different chemo-
graphs (molecules). Let us consider two fragments of
the same molecule from a set of precedents, every of
which corresponds to a certain ¥-invariant. Let -

invariants be formed on the basis of x-chains o, € ¥
such that x-fragments (i, o, (i_'B € IT are defined; the
case with y-nodes is considered in a similar way.

Let us consider all the molecular systems, which
correspond to the chemographs in X and contain at
least one of the two y-fragments. Let us divide these
systems into the three subsets: set of chemographs

AB= {(X e X|(i,'0.€ X, ,'BE X} (which corre-

PATTERN RECOGNITION AND IMAGE ANALYSIS

Vol. 32

207

sponds to the molecular systems containing two frag-
ments) and subsets 4 = {X € X|{i.,'0 & X\4B and
B={X € X|i,'B&€ X)\AB. For certainty, let
;1:,'0(‘ =1 and n;‘[s\ =1 be fulfilled (the cases with

ﬂ;'oc‘ >1, ﬂ;lﬁ‘ > 1 have no fundamental distinction,
but require excessively complicated formalism).

According to the hypothesis of fixed contributions
of y-invariants (Definition 2) we assume that, in each
of the molecular systems corresponding to sets of che-

mographs A, B, and AB, all x-fragments fJ,:,l(x are
described by the same y-function y,, while all y-frag-

ments [i,'B are described by the same y-function .
It is obvious that the interaction between Yy, and Yy
depends on the distance between them in each mole-
cule from set AB: the longer is the distance between (-
fragments, the lower are the values of corresponding

overlapping integral S, ;, and the more adequate is the
description of y 4z as linear combinations of y, and .

Technically, distance d ,; between -fragments can
be estimated by different methods, e.g., as an average
distance between the atoms of fragments (centroids),
as a minimum distance (i.e., distance to the nearest
atom of another fragment), as a length of the shortest
path in a chemograph between two x-fragments (if

there is a shared vertex, d,; = 0), or as a length of the
maximum path among the shortest paths when the

number of shared vertices is taken into account (d; =
0 if all vertices are shared), etc. From the perspective
of MO theory, the physical meaning of the hypothesis
that the contributions from each of the -invariants
have an additive character (i.e., they are independent
of all the other contributions, Definition 1) is con-
firmed by the following theorem.

Theorem 1 (on the additive correction of interac-
tions between the y-fragments of a chemograph). Let
the quantitative estimate of interaction between two X -
fragments in a chemograph monotonically descend with
an increase in the distance between the | -fragments and
be independent of the types of Y -fragments, the arrange-
ment of -fragments in the context of a chemograph, and
the selected method of measuring the distance between
the fragments. The contributions of any two ¥ -fragments
can then be considered as independent, and the correc-
tion for the interaction between a pair of (-fragments can
be taken into account as the contribution from the third
X-fragment, which forms a connected subgraph with this
pair of fragments.

Proof. Independently of the procedure used for the
generation of y(-fragments and the method of measur-
ing the distance between Yx-fragments, if two frag-
ments of a molecule have no the third fragment con-
necting them, the contributions of both y-fragments
to the overall property of a molecule may be consid-
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ered independent so the overlap of such remote orbit-

als may be neglected (S, = 0). The feasibility of this
condition depends on the method used for the gener-

ation of sets Y(X) and ¥ (X) of chemoinvariants.

Let two x-fragments [i,'a. and [i,'B,

il =1,

ﬂ;'B‘ =1, according to Definitions 1 and 2, make con-

tributions ®, and g to the property of a molecule,

and w,g describes the contribution to the property of a
molecule from the interaction between j-fragments
(i.e., 0 is the correction for the interaction between

(i_'o. and [i;'B). Let us note that the case of
A~ —1

. oc‘.
According to the theorem, let the interaction

between y-fragments be determined by distance d
between them such that correction @, is calculated as

ﬁ;'oc‘ > 1

is trivial and merely corresponds to @,

monotonically descending function f~ of d,g w,s =

S (dyp); i-e., the longer distance dg, the smaller .
The contribution of both fragments and their correc-
tion for their interaction to the property of a molecule

can then be described as , + g + f (dyp)-

Let chemograph X contain m y-fragments, \,, U,,
woos Wy W € S(X). Let us consider the distances from
ith y-fragment p, to all the other y-fragments p,,
i # j. The correction introduced for the i, jth pair of
contributions is equal to f (d;) and, taking into
account all the other fragments, depends on distances
{d;} to the ith fragment. For fragments with identical
distributions of {d;}, the correction is the same and

equalto s; = Z;# S dy).

The distributions of distances {d;} depend on the
centrality of a fragment: the closer is it to the center of
amolecule, the lower the number of longer paths (cor-
responding to lower f~ (d;)), and the higher the num-

ber of shorter paths (corresponding to higher f~ (d;)).
By definition, the center of a graph is the set of the ith
vertices with minimum values of ith chemograph ver-

tex “centrality” sums ¢; = Z d; . Since the frag-
m

J=l,
ments with the same centrality ¢; have equal correc-
tions s;, let us consider two fragments with different
centralities (i.e., with different distributions of {d;}).
Let i, be more peripheral and i, be more central, so
that ¢, = ¢; and s; < s, . If the procedure for the gen-
eration of x-fragments is such that there exists third
fragment i; from S(X) to connect -fragments y; and
W,, ¢ 2¢ 2¢, and, correspondingly, S, S8, S8
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According to the aforesaid, the contributions of -
fragments |, and [, to the property of molecules are

estimated as w; + w;, + f(d;;,). At the same time, for
x-fragment i;, weight @, is defined such that the con-
tribution all the three fragments is equal to @, + w; +

o, t /)t fd,)+ [ (d,) However, accord-
ing to the theorem, the interaction between x-frag-
ments is independent of the arrangement of y-frag-
ments in the context of a chemograph; so, the descrip-

tion of interactions between random Y -fragments ,
and y, must be independent of their centrality. The
latter correspondsto s; =5, =s; = s. The sum of cor-
rections @;; over all the pairs of y-fragments |, and
W, is then equal to Zi:Lm s;, i.e., is a product of the
number of chemograph x-fragments (m) and a con-
stant (s). Correspondingly, contribution ®,; of the
third fragment 1, can be considered as a correction for

the interaction between two fragments 1, and . The
theorem is proven.

Corollary 1. The condition of theorem corresponds
to the sets of y-fragments, which are formed via the
complete enumeration of subgraphs of corresponding
type (y-chains and x-nodes).

Corollary 2. The property of the entire molecule can
be calculated by summation over y-fragments. The sum
remains unchanged after permutation of the summands.

Corollary 3. According to the theorem, when the
interactions between Y -fragments are taken into
account, the calculated property of a molecule incor-
porates term ms equal to the product of the number of
chemograph x-fragments m and constant s. This fol-

lows from the condition that S, =8, =5, =S.

Corollary 4. When the theorem condition is ful-
filled, property W of molecule X is calculated by the

additive scheme as W = Z O + ms, i.e., by sum-
i=l,m

mation over m Y-fragments, |; € II(X). It follows
from this that ; are orthogonal (i.e., their overlap
integrals are zero).

Theorem 1 with corollaries shows that even the sim-
plest additive scheme of calculating the properties of a
molecule in compliance with problem formulation (1)
makes it possible to take into account the overlap inte-
grals within the framework of MO theory. This becomes
possible under certain conditions imposed on the con-

struction of sets Y(X) and Y(X) of chemoinvariants.
Moreover, the addition of y-invariants corresponding
to the “third” y-fragments (i.e., the fragments compos-
ing a connected subgraph for a random pair of x-frag-

ments) to sets Y(X)/ )9(X ) allows us to presume the
orthogonality of y-functions corresponding to -invari-

ants in such ¥(X)/Y(X) (corollary 4).
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There are several approaches to experimental veri-
fication of the entire complex of hypotheses under the
condition of Theorem 1.

First, it is possible to estimate the computational
accuracy of the additive scheme, which is implied in
Corollary 4 (Theorem 1) and corresponds to the formu-
lation of chemometric analysis problem (1). The degree
of correlation between the calculated and experimental
QM parameters of molecules is an indirect method of
estimating the reasonability of the introduced complex
of hypotheses (Definitions 1 and 2).

Second, the interactions of functions y, and

corresponding to x-invariants in sets Y and Y can be
estimated by measuring the distances between the cor-
responding -fragments of set AB. Let us point out
that overlap integral S,; of y-functions y, and Y,
which correspond to two certain -invariants, is calcu-
lated within a single molecule, and the distances
between the corresponding ) -fragments are deter-
mined for sets of molecules 4, B, and AB. (The latter,
by the way, implies a kind of “averaging” for functions

vy, and ypand S, over asample.)

To estimate the distances between -invariants o
and [ over sample of molecules 4B, let us calculate
the empirical distribution function (e.d.f.) of distances

{d 5} between y-fragments [i'o. and [i_'B. Let us note
that neither the value of ﬂ;'oc‘ (;1:,10(‘ =lor ﬁ;loc‘ >1)
nor the type of an y-invariant (-chain or x-node) is

of fundamental significance for e.d.f. construction.
The obtained e.d.f. is used as a basis to construct met-
ric p,;, which calculates the average distance between
two y-invariants (e.g., as the mathematical expecta-
tion of e.d.f.). In addition, some other definitions of
metric p, can also be used for the analysis of “dis-
tances” between x-invariants (see [11]).

Afterwards, all the pairs of x-invariants found in
the chemographs from set X are used as a basis to form
the p,-configuration of distances between y-invari-
ants and analyze the distribution of distances in this
p-configuration and the existence of metric concen-
trations [6—10]. In particular, the proximity of the p-
spectra of a constructed p,-configuration to the
Gaussian distribution or negligible deviations of each
i-spectra of a p, -configuration from the p-spectra evi-
dence that the p, -configuration is close to a space of
isolated points (which correspond to the same values
of all distances p, in the ideal case). The latter is evi-
dence for the mutual orthogonality of ¥ -invariants and
their corresponding “averaged” y-functions.

On the whole, from the perspective of MO theory,
the delocalization of electrons about the y-fragments
corresponding to ¥-chains and -nodes is implied.
The sharing of an electron in the case of x-node is
quite feasible, as the latter represents the nearest cova-
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lent environment of any atom of a molecule. Prelimi-
nary experiments have shown that, in most cases,
X-chains correspond to m-systems (chains of conju-
gated double bonds) or fragmented m-systems (e.g.,
two double bonds spaced apart by two ordinary
bonds). That there is delocalization of electrons in
Tt-systems is commonly known.

4. INTERPRETATION OF THE RESULTS
FROM THE PERSPECTIVE OF DENSITY
FUNCTIONAL THEORY

Density functional theory (DFT) is a very import-
ant contemporary area in QM, which not only pro-
vides the possibility to derive physically interpretable
SE forms, but also makes it possible to increase the
precision of QM calculations. The central idea of DFT
is the reformulation of quantum-mechanical Postu-
lates 1—4 [11] in the forms corresponding to the tran-
sition from the W-functions of a molecular system to
the distribution of its electron density:

p(F) =N [

RSN

[Px)f dx. 4)

From the physical perspective, the advantages of
such an approach are obvious: electron density p(¥) has
a clear physical meaning and is experimentally measur-
able (e.g., in diffraction experiments). The transition

from highly dimensional configuration space R tothe
“physical” Cartesian space, in which vectors 7 are
defined, essentially improves the interpretability of QM
functionals in density functional theory.

Within the framework of density functional theory,
it has been shown that a state with a minimum energy
(i.e., the ground state) has transform F reciprocal to
(4) such that the W-function can be written as an elec-
tron density functional; i.e., W(x) = F(p(¥)). Corre-
spondingly, the average value of physical parameter 4 is

calculated as 4 = (F(p(F))| A| F(p(F))) (Postulate 2).
For instance, the total system’s energy (in the Born—
Oppenheimer approximation) can be expressed as a

functional of p(F) as E@PF)) = Fu(pF)) +

Vol F(P(F))), Fux(p(F)) = TF(P(F)) + V, (F(P(F))).
The problem of searching the form for functional
Fyx(p(7)) (Hohenberg—Kohn) is the central problem
in density functional theory [2].

From the perspective of analyzing the results from
the application of topological chemograph theory
(Eq. (1) and others), the electron density calculation
procedures naturally admit the additive models, which
factorize the contribution of different energy terms to
summary p(7) (in contrast to the W-functions, which
describe the entire system as an integer whole). Chem-
ical bonding theory [3, 8, 9], which gives a list of rules
for the generation of chemograph incidence matrix,
also makes it possible to obtain a rough map of elec-
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tron density p(#) in molecules. It is quite clear that the
covalent bonds corresponding to chemograph edges
are characterized by an increase in the electron density
in the internuclear space in comparison with the sum
of the electron densities of free atoms. The precision of
reproducibility for p(#) depends on the selection of cova-
lent radii, polarization, and a number of other quantita-
tive parameters used in chemical bonding theory [2, 5].

Correspondingly, the representation of a molecule
as a set of y-fragments is a method for the additive
fragment-wise description of the electron density map
of a molecule. The averaging of p(¥) over the frag-
ments surrounding every atoms ()-node) makes it
possible to develop schemes for the prediction of
atom-wise molecule properties (e.g., the partial
charge, reaction centers of molecules, etc.) in the pro-
cess of learning on the set of labelled chemographs
with numerical estimates of their vertices/edges.

5. ON THE APPLICATION OF FORMALISM
FOR SOLUTION OF MOLECULAR
SCREENING PROBLEMS

Additive chemometric analysis scheme (1) repre-
senting the summation of weighed feature values with
the function of losses in the form of a module may have
several QM interpretations. From the perspective of
chemical bonding theory, the problem (1) corresponds
to the introduction of hypotheses about the additivity
and constancy of contributions from j-invariants.
Within the single-electron approximation, the x-frag-
ments in prebasis U(X) correspond to a certain set of
single-electron wave functions. From the perspective of
MO theory, the defined methods for constructing the
sets of x-invariants make it possible to take into account
the overlapping integrals of ) -fragments for delocaliza-
tion of electrons x-fragments. From the perspective of
density functional theory, scheme (1) can be interpreted
as a method for the additive description of the electron
density map of a molecule.

From all these facts, it is quite clear that the preci-
sion of calculations by additive scheme (1) can hardly
approach that of results obtained by earlier-developed
computational schemes of quantum mechanics due to
rather strong assumptions about the additivity and the
constancy of contributions of y-invariants (Definitions
1 and 2). Nevertheless, a number of specific features
characteristic of the correlation cloud of points O(X) =
{w,X), T,X)),XeX, m= 1,...,|X}, where W, (X)
is calculated forall X € X (e.g., in compliance with the
solution of problem (1)), make it possible to estimate
the practical applicability of the obtained results.

First, cross-validation estimates of the correlation
coefficient and the other functionals of estimating the
adequacy of models on O(X) (standard deviation,
determination coefficient, robust linear smoothing
functionals, different statistical functionals, etc.) pro-
vide a comprehensive quality estimation of simulation
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modeling values of 7'by means of model W. Second,
the relevance of characteristics can be estimated for
cloud O(X) of points for solving the corresponding
problems of the classification and high-performance
screening of molecules in silico.

Theorem 2 (screening theorem). The precision in the
classification of chemographs from X is proportional to
the degree of covering correlation cloud OX) =
{W,,,T,)} of points by the cells of the major diagonal of
a coordinate grid formed by the corresponding percentiles
of values T and W.

Proof. Let target variable T'in lattice L(7(X)) corre-
spond to chain A(X)), and let the estimates obtained
by means of model W correspond to chain 4'(X)). Let
us construct e.d.f. for both chains cdf(A(X)) =
{(A, P)} and cdf(A4'(X)) = {(A,, P}, i,j=1...,[X|
For a specified number of percentiles Np (Np =2, 3, ...,
10, etc.), let’s determine the subsets, which belong to set
X and correspond to the pth percentiles of values 7" and

W, as TI(p, cdf(A(X))) = {(x,-,m "N—‘l <P< NL} -

P P
cdf(A(X)) and T1(p,cdf(A'(X))) —
Al v _1 Al p .
A, P P2 o p <P\ respectively.
{( P N, ) Np} p V.

Let us define the class of chemographs interesting to
a researcher in terms of percentiles I'1(p, cdf(A4(X))) and
introduce the class membership function f- such that
Jc(X,II(p,cdf(A(X)))) = 1, if chemograph Xbelongs to
a “positive” class of chemographs;
Jo (X, II(p,cdf(A(X)))) = —1, if X belongs to a “nega-
tive” class; and f-(X,I1(p,cdf(A(X)))) = 0 otherwise.
Function f- may be monotonical or non-monotonical.

Let us postulate that there is one-to-one corre-
spondence between percentiles cdf(A(X)) and
cdf(A4'(X)); i.e., at the same value of p, percentile
I1(p,cdf(A(X))) is always associated with percentile
I1(p,cdf(A'(X))). The values p = 1, ..., Np correspond
to the sequence of cells on the major diagonal of a
coordinate grid formed by corresponding percentiles
I1(p,cdf(A(X))) and I1(p,cdf(A4'(X))). Hence, a chain
of percentile cells has been formed on correlation
cloud O(X) of points.

Let us consider the ideal case, in which the correla-
tion cloud is a straight line (i.e., correlation coefficient
r(O(X)) = 1.0, and standard deviation std(O(X)) = 0).
The above defined mutually equivalent percentiles
then cover all the correlation cloud points,
I1(p,cdf(A(X))) = Il(p,cdf(A4'(X))) for all p, and the
classification error is zero.

Let us consider the more general case with
r(O(X)) < 1 and std(O(X)) > 0. Let us select the per-
centiles of values T with f.(X,Il(p,cdf(A(X)))) = 1.
For each of these percentiles, all the correlation cloud
Vol. 32
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points lying below the cell of a percentile on the planar
diagram of cloud O(X) correspond to false positive clas-
sification errors (values 7 are lower than for W). The
cloud points “on the left” from the percentile rectangle
are false negative errors (values 7 are higher than the pre-
dicted W). Summing the values |[1(p, cdf(A(X))\I1(p,
cdf(A'(X)))|, [I(p, cdf(A'(X)\I1(p, cdf(A(X)))| over
all the percentiles with f.(X,I1(p, cdf(A4(X)))) =1 and
further over the percentiles with f.(X,I1(p,
cdf(A(X)))) = —1, we find classification errors of the
first and second types. Based on the calculation of the
numbers of errors, it is possible to find different accu-

racy estimates for a classification algorithm. The the-
orem is proven.

Corollary 1. Correlation coefficient »(O(X)) is an
indirect characteristic of accuracy of classification by
the percentiles of values.

Corollary 2. The difference between the correlation
coefficients for learning and control indirectly charac-
terizes the overfitting of a classification algorithm.

The use of Theorem 2 may be useful for the design
of computational experiments and the analysis of
obtained data. For example, if O(X) in a cross-valida-
tion experiment is such that the first and last quartiles
do not overlap, the precision of classification by the
first and last quartiles will be close to 100%. Such SM
precision is quite satisfactory for the problems of the
large-scale screenings of molecules and crystals.

6. ON CONTEMPORARY METHODS
OF CALCULATING THE QUANTUM-
MECHANICAL PARAMETERS
OF MOLECULES

The testing of developed SM procedures requires
maximally precise estimates for the quantum-
mechanical properties of molecules. For instance, the
use of single-electron approximation (2) is character-
ized by a very low precision, as it is necessary to take
into account the electron correlation effects. DFT
methods are most acceptable for the precise calcula-
tion of molecular geometry, and the errors in the cal-
culation of thermodynamic parameters are high (2—
3 kcal/mol) [2]. High-precision calculations (error,
~0.1 kcal/mol) are characterized by the use of hybrid
schemes incorporating the elements of single-electron
approximation, MO theory, and DFT approach [4].

For example, at rather long (several angstroms) or,
vice versa, very small (several fractions of angstrom)

distances between particles, Fockians ﬁ, (2) corre-
spond to the hydrogen-like y-functions and can be
written in the form of polynomials, in which only the
senior term multiplied by an exponent is essential
alone. This allows us to introduce so-called Gaussian-
type orbitals (GTOs), in which the radial components
of W-functions are specified in the form of parametric
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functions R,(r) = r*e™" | k,, &, € R, v=1,...,N,,
where N, is the size of a basis. When searching for the
best MO approximations, the bases composed of lin-
ear combinations of such radial components are used
in combination with semi-empirical potentials, DFT
functionals, etc. [2]. For the sample of molecules ana-
lyzed in the present study (see the following section),
the values of different quantum-mechanical parame-
ters of molecules were determined by using the
B3LYP/6-31G(2df,p) Gaussian basis of “mixed”
semi-empirical potential B3LYP and the Gaussian-9
software [1]. The calculations incorporated the opti-
mization of molecular geometry (coordinates of nuclei
R) by the B3LYP/6-31G(2df,p) method from DFT in
the single-electron approximation [4].

7. RESULTS OF SIMULATION MODELING
OF QUANTUM-MECHANICAL PARAMETERS

The models for the generation of the informative
numerical features for chemographs via the solution of
the problem (1) were tested together with the corre-
sponding algorithms for the prediction of numerical
variables [10] on a sample of 134 thousand stable small
organic molecules with a maximum of nine “heavy”
atoms C, O, N, and F (no more than 20 atoms; here-
inafter, the sample will be denoted as 134K). For this
sample, the geometric, energy, electronic, and ther-
modynamic properties were calculated earlier using
QM techniques [4].

The initial descriptions of chemographs in set X
were presented by interatomic chemical bond-multi-
plicity matrices M(X) with specified types of chemical
atoms. To obtain set Q of precedents with the further
application of Theorem 1, the transition from matrices
M(X) to tuple invariants on the basis of ¢-chains and
x-nodes was performed as described in the first part of
this paper [1]. To test the algorithms following from
the proposed formalism, alphabet Y incorporating the
elements of the Cartesian product of the chemical type
of an element and the charge and admissible hybrid-
ization states of atoms was used. The size of this alpha-
bet was |¥Y] = 44 when the effects of hydrogen atoms
were taken into account, and much smaller when
hydrogen atoms were ignored (|Y| = 14). Additional
examples of Y-alphabets were detailed in [9].

To determine the optimal values for parameters »
and k, which are used to generate the feature descrip-
tions of chemographs, the combinatorial testing of
invariants from families {B[X] ﬁ;lf "(n = 1-7),

IBIX1A, Y (k) (k=3-7), and IB[X](i, Y" U i, Y (k))
for completeness was carried out. The functionals
based on the precise Fisher test were used to produce
the functions for enumeration of the elementary

invariants, A : 1, — N . For each tuple invariant, local
completeness estimates 7(1,Q) (see [11]) were calcu-
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Table 1. Results of cross-validation testing of simulation modeling algorithms for 15 QM parameters (» and r(c) are the aver-
age rank correlation coefficients for learning and control, respectively)

Constant QM parameter Units r r(c)
A Rotation constant A GHz 0.77 0.73
B Rotation constant B GHz 0.74 0.73
C Rotation constant C GHz 0.72 0.71
M Dipole moment Debye 0.72 0.72
A Isotropic polarizability Bohr? 0.69 0.67
HOMO Energy of highest occupied molecular orbital Hartree 0.82 0.79
LUMO Energy of lowest unoccupied molecular orbital Hartree 0.85 0.83
Gap Gap difference between LUMO and HOMO Hartree 0.86 0.83
r2 Electronic spatial extent Bohr? 0.67 0.67
ZPVE Zero point vibrational energy Hartree 0.85 0.85
uo Internal energy at 0 K Hartree 0.69 0.67
U Internal energy at 298.15 K Hartree 0.69 0.67
H Enthalpy at 298.15 K Hartree 0.69 0.67
G Free energy at 298.15 K Hartree 0.69 0.67
Cv Heat capacity at 298.15 K cal/M K 0.75 0.75

lated on a regular set of chemographs from the 134K
set. The results show that k =4 and n = 5 correspond
to an acceptably high values of the local completeness

of family invariants, i.e., 7(1,Q) = 0.97. In other words,

the set of x-invariants {B[X](i;'Y" U fi;'Y (4)) makes it
possible to distinguish 97% of the pairs of the chemo-
graphs produced from the 134K dataset.

Similarly to the study [10], the prediction of
numerical values was performed via algorithmic com-

positions zfl(e(Pr)) = B(6(Pr)) o C(6(Pr)) o D(6(Pr)),
which are commonly adopted in Zhuravlev’s science
school and incorporate a recognizing operator B, a
corrector operation C and a decisive rule D, 6(Pr)
being the vector of inner parameters of the algorithm.
Linear recognizing operator B, which generates the syn-
thetic numerical features of chemographs, was con-
structed in compliance with the additive scheme (1)

on the basis of the set IB[X](i.'Y’° U i'Y(4)) of %-
invariants. The synthetic features produced by the
operator B were the predictions of 15 QM molecular
parameters determined on the basis of high-precision
QM calculations for molecules from sample 134K [11]
(see the list in the Table 1). The optimal weights of
chemoinvariants in scheme (1) were determined by
means of multistart stochastic optimization [10].

The corrector C was constructed as the Cartesian
product of the set of synthetic features obtained in
compliance with scheme (1) and the vector of six cor-
recting operations (linear transformation, logarithm,

PATTERN RECOGNITION AND IMAGE ANALYSIS

exponent, power function of three types y = x",
v =1.5,2,3) such that the summary number of syn-
thetic features after application of the operator
B(6(Pr)) o C(6(Pr)) was equal to 90.

Linear models (in which the vector of parameters 6
was optimized by means of multistart stochastic opti-
mization or singular value decomposition) or nonlin-
ear models (so-called neural network of three levels)
were used as decisive rule D. The efficiency of the

application of different compositions A(O(Pr)) or of
the methods for fitting the inner parameters 6 was esti-
mated in cross-validation experiments, in which sam-

pling operator Zz (see the first part of this paper [11])

was determined such as to form set of samples éX
incorporating ten arbitrary divisions of the set of che-
mographs X into “case-control” pairs of groups at the
size ratio of 6 : 1.

The results of cross-validation experiments have

shown that the “topological” algorithms 21(6( Pr)) opti-
mal for the prediction of the 15 studied QM molecular
parameters correspond to the following requirements:
(1) the correction for the effects of the hydrogen atoms
(the use of the enhanced alphabet, [Y | =44), (2) the use
of the linear decisive rule D, (3) the use of stochastic
optimization to find parameters 6, and (4) the use of
correction for the number of chemograph y-fragments
(see Corollaries 3 and 4 from Theorem 5 in the first part

Vol. 32 No.1 2022



TOPOLOGICAL CHEMOGRAPH ANALYSIS THEORY AS A PROMISING APPROACH

1.0

213

0.9
0.8
0.7
0.6
0.5
04| F
03
0.2

0.1

0.1 01 03

05 07 0.9

Fig. 1. Analysis of errors in LUMO—HOMO calculations (arb. un.) with regions of the most typical errors. The band in the figure
center corresponds to the standard deviation of the topological SM algorithm.

of this paper [11]). The results of the numerical experi-
ments are summarized in Table 1.

It is clear from the data of Table 1 that the rank cor-
relations between the calculated and experimental val-
ues were in range 0.67—0.85. Despite such essential
distinctions between the accuracies of the simulation
modeling of different QM properties of molecules, the
algorithms of the simulation modeling of all 15 prop-
erties were characterized by acceptable generalizing
ability. The latter can be indirectly characterized by
the differences between the rank correlation coeffi-
cient values (Theorem 2, Corollary 2), which were
obtained in the course of learning (») and control
(r(¢)) and attained only 0.016 in the average (95% CI
0f 0.003—0.041).

One of the best SM algorithms developed within
this topological approach was the algorithm to esti-
mate the gap between the highest occupied molecular
orbital and the highest occupied molecular orbital
(LUMO—HOMO gap width): » = 0.86 for learning
and r(c) = 0.83 for control at a standard deviation of
0.14—0.17. Despite the apparently smeared character
of respective correlation cloud O(X) (see an example
in the Figure 1), 92% of the points in the quartile of
maximum “topological” values for the LUMO-—
HOMO gap width corresponded to the quartile of the
largest “quantum” LUMO—HOMO gap widths. Here,
the quartiles of the largest “topological” and “quan-
tum” LUMO—-HOMO gap widths overlap each other
up to 77% of points. In other words, in a large-scale
screening of molecules by the LUMO—HOMO gap
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width, the quartile of maximum values found by the SM
algorithm makes it possible to select 77% of compounds
with the highest values of this molecular property.

The analysis of correlation between the number of
atoms in a molecule and the error of “topological” cal-
culations has shown that a maximum error was
observed for molecules with 8—12 atoms and
descended with an increase in the number of atoms
(r=—0.33). Let us note that maximum errors (of 50%
and higher) were observed for the molecules contain-
ing five hydrogen atoms (as a rule, aliphatic hydrocar-
bons with the general formula C,H,, ,,). Contrary-
wise, a higher number of double bonds in a molecule
corresponded to a lower error. A decrease in the error
with an increase in the number of atoms in a molecule
indicates that “topological” calculations may be
extended to more complicated molecular systems.

The four regions of the most typical errors of the
resulting SM algorithm of calculation of the LUMO—
HOMO gap are detailed in the Fig. 1. The central band
of points in Fig. 2 (region 0) corresponds to the che-
mographs, for which the differences between the
“topological” and the “quantum” LUMO—-HOMO
gap widths were less than one standard deviation. The
highest number of errors (8% of the 134K dataset) was
in the region I. Hereinafter, “error” will mean the SM
result, which differs from the “quantum” value by
more than one standard deviation.

Region I corresponds to the domain of rather low
LUMO—-HOMO gap-width values, which were over-
estimated (on average, by 0.15) by the “topological”
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Fig. 2. Model configurations: aliphatic C—C—C—C—C y-
chain (left) and x-chain corresponding to the C=C—C—
C=C m-system (right), for which QM calculations were
carried out by the B3LYP/6-31G method.

SM algorithm. The analysis of the atomic composition
and of the structural formulas of chemographs related
to the region I has shown that they contain twice as

many hydroxyl groups (—OH), ten times more NH;
(ammonium) derivatives, and 11 times more alde-
hydes (—CHO) in comparison with the chemographs
from region 0.

Region II corresponds to the underestimation of
high LUMO—HOMO gap widths (0.7—1.0) (by —
0.20). The chemographs in the region II have five to
ten times fewer double bonds and 2 times more fluo-
rine atoms as compared to the other regions. Hence,
aliphatic (saturated) fluorine-containing compounds
are more frequently encountered in region I1.

The fact that aliphatic chains represent a signifi-
cant source of error corresponds to the considerations
stated in the section on MO theory related to the delo-
calization of electrons around Y -fragments. Aliphatic
chains are characterized by lower rotation thresholds
than are chains with double bonds, and a fluorine
atom (the most electronegative chemical element)
makes an essential contribution to the redistribution of
local charges. Both of these considerations prevent
delocalization of the electrons around the relevant
% -fragments.

In order to estimate the delocalization of electrons
in aliphatic and double-bond systems we performed
QM calculations of model chains C—C—C—C—C (ali-
phatic, i.e., containing only ordinary carbon—carbon
bonds, with all the others being carbon—hydrogen
bonds) and C=C—-C—C=C (a m-system, the unsatu-
rated chain which has two double C=C bonds, while
the others are ordinary carbon—carbon bonds). QM
calculations were performed by the B3LYP/6-31G
method (Gaussian-9 software [1, 4], Fig. 2). The
results of QM calculations have shown that the partial
charges on the carbon atoms in the aliphatic C—C—
C—C—C chain are nearly identical (their absolute val-
ues ~0.01, and the signs of charges alternate as “—”,
“y e e <) At the same time, the unsatu-
rated C=C—C—C=C system is observed to have a dis-
tinctly different distribution of charges: the absolute
values of the charges differed from each other by an
order of magnitude (from 0.001 for the terminal C
atoms to 0.046 for the central C atom) with retention
of the sign-alternation pattern. In this case, the equi-
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librium conformation of the aliphatic C—C—C—-C—-C
system corresponds to a plane (Fig. 2) and the equilib-
rium conformation of the C=C—C—C=C r-system,
the two planes of the double bonds are perpendicular
to each other. These specific features of the electronic
and geometric structure of the model chains indicate
that there are essential distinctions that are observed in
the degree of sharing the electrons around the ali-
phatic and unsaturated x-fragments of the corre-
sponding %-chains and lead to the predominance of
aliphatic chains in the error region II.

Region III is opposite to the region I and corre-
sponds to the area of rather low LUMO—HOMO gap
values underestimated by the SM algorithm. Com-
pared to the other regions of errors, molecules in the
region III contained from four to six times fewer triple
bonds and from four to ten times more hydrocarbons
with sp? hybridization and no more than one hydrogen
atom. Here, there are three to eight times more chains
of carbon atoms corresponding to m-systems (C=C—
C=C, etc.) and, vice versa, two to five times fewer ali-
phatic chains (C—C—C, etc.). Hence, the chemo-
graphs describing aromatic and other m-systems are
predominant among the points in region III.

Region 1V is opposite to the region II and corre-
sponds to the overestimation of average and high
LUMO—-HOMO gap values (0.5—0.8). The molecules
containing three or more rings are from three to ten
times more frequently encountered in the region IV
than in the other regions. Hence, the errors in region
IV are associated with the predominance of polycyclic
compounds.

The above-presented results of an expert analysis of
the errors of the SM algorithm allowed us to draw sev-
eral conclusions of constructive character. First, the
chemographs in regions I-IV of errors correspond to
the predominance of molecules with fundamentally
different chemical structures: ammonium derivatives
and aldehydes (region I), aliphatic (fluorine-contain-
ing) molecules (region II), aromatic and other 1t-sys-
tems (region III), and polycyclic compounds
(region IV). Second, these classes of molecules can be
determined on the basis of the structures of labelled
chemographs and the postulates of chemical-bonding
theory prior to calculations. Third, the analysis of
these classes of molecules independently may funda-
mentally improve the accuracy of SM algorithms.

The separate analysis of the classes of molecules in
connection with the errors in regions -1V can further
be performed within the framework of expert data
analysis or with the use of more flexible approaches to
machine learning (e.g., on the basis of the method of
committees, boosting, etc.). In the case of expert anal-
ysis, the division of the entire 134K sample into two
subgroups containing specific chemographs (corre-
sponding to polycyclic, aromatic, and aliphatic com-
pounds, n = 26 765) and all the other chemographs
has allowed us to increase the correlation coefficient
Vol. 32
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Table 2. Examples of -chains with maximum absolute values of weights for calculation of LUMO—HOMO gap width.
Chains are arranged in the order of decreasing weights ;. ~C is a carbon atom with steric stress (e.g., in a three-membered
ring), C* is a chiral center of type D (as in D-alanine, etc.), $Cisa carbon atom in aring, and R, R1, R2, and R3 are random

substituting groups (so-called “radicals™)

Chain

—~C(R,R1)"C(R2,R3)*CH,"CH,"CH,—
—~HC(R)—H,C—H,C—H,C—H,C—
—H,C—H,C—HC(R)—H,C—CH,
—~CH,—H"C*(R1)—H,C—H"C*(R2)—O—
—H"C*(R1)~H"C(R2)—0—H,C—0O—
CH,;—HC(R)—H,C—O—CH;,
CH;—H$C*(R1)—H$C*(R2)—O—H,$C*—
—~C(R1,R2)—H,$C*~H$C*(R3)—H,$C*—~H"C(R)—
NH,—C(R1)=N—C(R2)=0
—H,$C*—$C(R)=$C(R1)~H$C=H$C—
—C(R1)=HC—C(R2)=HC—HC=
—HC=C(R1)~N=C(R2)—HC=
—C(R1)=HC—HC=C(R2)-NH,
NH,—$C(R)=$C(R1)~HC=0
=$C(R)—N=$C(R1)~HC=0
—C(R1)=C(R2)—O—HC=C(R3)—
—C(R1)=C(R2)—HN-C(R3)=HC—
=C(R1)-N=HC-C(R2)=0

¢, (1,7, Pr) ®;, arb. units

0.0043 0.402
0.0063 0.369
0.0077 0.337
0.0042 0.333
0.0042 0.326
0.0053 0.305
0.0050 0.277
0.0046 0.277
0.0047 —0.330
0.0095 —0.340
0.0163 —0.340
0.0075 —0.341

0.0072 —0.425
0.0065 —0.444
0.0043 —0.463
0.0045 —0.469
0.0051 —0.471

0.0043 —0.482

for control from r(c) = 0.83 to 0.88 at a decrease in the
standard deviation from 0.17 to 0.11.

Analysis of weights @, for y-invariants in Eq. (1)
makes it possible to obtain interpretable results com-
parable with considerations of an expert chemist. For
example, the calculation of the values of @,(iy,i, Pr)
(see Theorem 1 in the first part of our paper [11]) and
of the weights of elementary j-invariants has allowed
us to reveal the chemoinvariants that make the greatest
contributions to the calculated LUMO—-HOMO gap
widths (Table 2).

Let us note that the aforementioned -invariants
were rather rarely encountered: @ ({x,i,Pr) was less
than 0.0077 (i.e., 0.77% of all the chemographs in
sample 134K, Table 2). The greatest contribution to an
increase in the LUMO—HOMO gap width was intro-
duced by the chemoinvariants containing carbon
atoms with pronounced steric stress
(—"C(R,R1)"C(R2,R3)"CH,"CH,"CH,—, etc.) and
aliphatic chains (-HC(R)-—H,C—-H,C—H,C—-H,C—,
—H,C—H,C—HC(R1)-HC(R2)—CHj3;, etc.), i.e., the
fragments of molecules with obviously increased
HOMO energies. On the contrary, a maximum contri-
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bution to a decrease in the gap width was made by 7-
systems (=C(R1)-—N=N-C(R2)=HC-—, =C(Rl)—
N=HC-C(R2)=0), which imply the sharing of an
electron along the chains of m-bonds by definition.
The latter facilitates the transfer of electrons between
the LUMO and HOMO orbitals.

In brief, the SM algorithms developed are charac-
terized by a precision and a high generalizing ability of
models acceptable for conducting large-scale screen-
ings of the quantum-mechanical properties of mole-
cules in silico.

CONCLUSIONS

The proposed procedures for simulation modeling
of the quantum-mechanical properties of molecules
can be important for solving various problems in the-
oretical and applied chemistry. In theoretical chemis-
try, it is very important to develop theories and com-
putational models that are acceptable for all classes of
compounds and that make it possible to establish the
semiquantitative interrelations between the spatial
structures of molecules and their properties. Such
models should allow the researcher to identify the
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structural features that determine particular properties
of the molecules, the possible reactions of the mole-
cules and to predict the effects of structural modifica-
tions of the molecule. The need for computationally
efficient models of this kind is obvious since the num-
ber of the known chemical compounds is measured in
several hundreds of billions. For datasets of this size it
seems quite impossible to obtain the data of precise
quantitative QM calculations for each compound.

The cross-validation testing of the SM algorithms
developed here allowed us to estimate the accuracy
and the extent of overfitting of the proposed models
and algorithms. In this case, the “topological” models
of machine learning are characterized by good physi-
cochemical interpretability (including interpretability
in the terms of the quantum theory) and computa-
tional efficiency when compared with high-precision
calculations on the basis of density functional theory.
In fact, according to the models proposed the calcula-
tions involve a simple summation of the floating point
numbers, the amount of which is comparable to the
number of edges in the chemograph involved. These
peculiarities of the algorithms developed provide the
possibility of their application to the solution of a
broad spectrum of problems: estimation of the quan-
tum-mechanical properties of metabolites and of oli-
gopeptides, the search/design of molecules with spec-
ified quantum-mechanical properties, solving various
problems of materials science, the design of new
drugs, repurposing of already-known medicines, etc.
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