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Abstract—Adequate formalization of problems is the most important task that has to be solved in order to
apply the modern methods of so-called “machine learning” to real problems. The effective application of the
metric, logical, regression, and other algorithms of machine learning becomes possible only when feature
generation procedures and classes of objects are adequately defined. In this study, the theory of topological
analysis of poorly formalized problems and the theory of analysis of labeled graphs were applied to the prob-
lem of predicting numerical characteristics of crystalline materials. The methods developed were tested on
the problem of predicting the critical temperature of superconducting transition (Tc) of high-temperature
cuprate superconductors (1450 structures). As a result, in a tenfold 6 : 1 cross-validation, the best model with
a linear recognition operator yielded quite high average value of the correlation coefficient (r = 0.77) between
the predicted and experimentally determined values of Tc.
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1. INTRODUCTION
Poorly formalized problems (for which, by defini-

tion, there are no unambiguous methods for defining
objects, features, and classes) are widely presented in
biomedicine, chemoinformatics, bioinformatics, solid
state physics, applied linguistics, and in other fields of
modern science. The formalization of such a problem
can be visualized as a transition from the set of initial
descriptions of physical objects to a particular topology,
then to a lattice, and then to a certain metric space [1].

Within the algebraic approach to the solution of the
pattern recognition/classification/prediction prob-
lems, the formalization of a problem provides ade-
quate definitions of the set of initial information (Ii)
and the set of final information (If) [2–7]. Such defini-
tions, in turn, allow one to form a set of precedents as a
subset of the product ( ) and then to apply the
algebraic approach to the solution of recognition/clas-
sification/prediction problems [2, 3]. Transition from
the original descriptions of physical objects to the sets of
precedents (i.e., to the subsets of ) that are based
on the topological approach to the formalization of
problems [1] allows one to construct and “train” algo-
rithms for solving problems , where  is
the vector of internal parameters of the algorithm.
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The algebraic approach necessarily implies the
study of the sets of precedents  and of the
algorithms  in respect to the fundamen-
tal properties of solvability/regularity of problems
Z(Pr) and correctness/completeness of the correspond-
ing algorithmic models . To this end, one
applies the factorization [4] and the metric [5]
approaches to the analysis of poorly formalized prob-
lems, which involve, in particular, the analysis of the
compactness properties of the subsets of metric con-
figurations [6, 7]. Obviously, the choice of the defini-
tions of the sets Ii and If should be maximally adequate
to the problem under study, because this naturally
determines the performance quality of the algorithms

 developed within the so-called para-
digm of “machine learning.”

In this study, we apply a set of theoretical methods
developed earlier for the analysis of poorly formalized
problems to the problem of predicting the properties of
crystalline materials. To this end, we use the concept
of a chemograph—a special kind of a labeled graph—
to describe the chemical structures of molecules and
crystals [8, 9]. We introduce special types of labeling
chemographs, “-chains,” and “-nodules,” on the
basis of which we construct methods for the numerical
evaluation of the similarity of structures and methods
of feature generation. To the feature descriptions of
chemical structures, we apply algorithms for predict-
ing numerical variables [10]. The methods developed

 Pr i fI I
 ( ) : i fA I I

  A θ

 ( ) : i fA I I

APPLICATION 
PROBLEMS

Received August 20, 2019; revised August 20, 2019;
accepted October 15, 2019



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 30  No. 2  2020

TOPOLOGICAL DATA ANALYSIS IN MATERIALS SCIENCE 263

here will be tested on a sample of crystalline structures
of high-temperature superconductors (HTSCs) with a
view to predicting the critical temperature of super-
conducting transition (Тс). A brief description of the
problem area is presented in the next section.

2. PHYSICAL MODELS OF HIGH-
TEMPERATURE SUPERCONDUCTIVITY

The phenomenon of superconductivity has been
known since the beginning of the 20th century. How-
ever, the fundamental physical principles of HTSCs
are still one of the key problems of solid state physics.
To date, the most fundamental theory of supercon-
ductors, the Bardeen–Cooper–Shriffer (BCS) the-
ory, involves the formation of the so-called “bosonic
condensate” (Bose–Einstein condensate). Bosons are
particles with integer spin, an unlimited number of
which can occupy the same quantum state, i.e., parti-
cles that form a bosonic condensate, which explains
superconductivity. However, the BCS theory in its
original strict version fails to explain the phenomenon
of cuprate superconductors (La2–xBaxCuO4 and oth-
ers), which are characterized by much higher values of
superconducting transition temperature (Tc) than the
theoretical limit of 30 Kelvin.

Further development of theoretical views on the
phenomenon of superconductivity proceeded in sev-
eral directions. First, a search is made for “intermedi-
ate” forms of fermions (particles with fractional spin
such that only one particle can occupy a single quan-
tum state) that are characterized by some properties of
bosons. Such properties include, for example, the
existence of antiparticles—particles with the same
mass and spin but with opposite signs of all other inter-
action parameters (charges, etc.). A boson can be an
antiparticle of itself, but a fermion, as a rule, is not.
The researcher Ettore Majorana proposed a theoreti-
cal description of fermions that are antiparticles of
themselves. Although such fermions have not been
found experimentally, the so-called “Majorana states
of fermions” are associated with one-dimensional
models of superconductivity [11, 12] (see further). In
[13], models of composite fermions were developed in
which attempts were made to associate superconduc-
tivity with antiferromagnetic f luctuations that induce
interactions between quasiparticles near the Fermi
surface [14].

Second, there have been attempts to apply various
definitions of bosons as “quasiparticles.” For exam-
ple, one defines polaron quasiparticles, each of which
consists of an electron and a phonon (crystal lattice
vibration). A bipolaron, a quasiparticle composed of
polarons (literally, “two polarons bound together by a
phonon interaction”), is a boson; it can form a Bose
condensate and is characterized by translational
invariance (i.e., can be described as a plane wave in a
crystal lattice). In [15], Prof. Lakhno showed that

translation-invariant bipolarons can form a Bose con-
densate even in one-dimensional systems (i.e., in the
chains of sequentially interacting atoms). In this case,
superconductivity is associated with the presence of
“stripes,” some local one-dimensional deformations
(several nanometers long) of the crystal lattice, within
each of which a superconducting bosonic condensate
(a quantum mechanical unified wave–particle delo-
calized along the stripe) is formed.

Note that the data of individual experiments indi-
rectly confirm the possibility of the existence of such
“one-dimensional superconductivity” [16]. For
example, X-ray scattering studies of the YBa2Cu3O6.67
HTSC have shown that a superconducting transition
occurs simultaneously with the suppression of the so-
called charge density waves during one-dimensional
compression of the crystal along the “a” axis of the
unit cell of the crystal [17]. Possible evidence for the
existence of one-dimensional “pair density waves”
(polarons) was obtained by studying the Bi-2212
cuprate HTSC with the use of tunneling spectroscopy
[18]. The studies of the thin-film single-crystal HTSC
La2–xSrxCuO4 reveal the in-plane anisotropy of elec-
tron transfer upon cooling the crystal to Тс [19]. Since
electric current f lows in one direction, the existence of
the in-plane anisotropy corresponds precisely to cer-
tain one-dimensional processes within the HTSC
crystal.

Third, in the theoretical analysis of the phenome-
non of HTSC, one can apply approaches borrowed
wholesale from other fields of solid state physics. For
example, superconductivity can be interpreted as a
special case of the theory of metallic conductors and
correspond to some “quasimetallic state” [20, 21].
Also, HTSC might be considered as a particular case
of semiconductor theory and is interpreted as the
result of some abstract “complex changes” in the Bril-
louin zone [22, 23], or even within the framework of
simpler phenomenological models of semiconductors
as the electron–hole model [24]. In all these direc-
tions, some quantum-mechanical calculations are
used as a tool for argumentation. However, it is well
known that the practical application of the available
methods of quantum mechanics to calculations of pre-
dictive sort inevitably involves the introduction of a
substantial set of assumptions, such as the use of only
atoms with 100% occupancy, and is possible only for
small structures (with at most 30 atoms in the unit cell)
or for atoms without f-electrons, etc. [25].

Thus, despite the existence of several theoretical
approaches to the phenomenon of HTSC, modern
physics provides rather a limited toolbox for real pre-
dictions of the superconducting properties (as well as
of many other properties) of crystalline materials.
None of the existing approaches has been developed to
an extent that would allow, for example, the calcula-
tion of the temperature Tc for an arbitrary crystal
structure. Therefore, within the algebraic approach of
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the scientific school of Academician Yu.I. Zhuravlev,
materials science is a good example of the so-called
“problem area” [26], in which mathematical methods
can be applied to recognizing, classifying, and predict-
ing the properties of objects by their feature descrip-
tions.

Recognition/classification methods developed
within the so-called paradigm of “machine learning”
by precedents are becoming more and more popular in
materials science [27], which is facilitated by the avail-
ability of the relevant databases [28]. For example, the
algebraic approach was earlier applied to the classifi-
cation of promising semiconductors with the general
formula AB2X4 (X = S, Se, Te). Information on the
properties of AB2X4 compounds, supplemented with
feature descriptions of the individual elements (atomic
radii, enthalpy of evaporation, melting and boiling
points, ionization potentials, electronegativity, etc.),
was used to form the initial sets of precedents. Then,
the classification algorithms that allow the prediction
of the existence of appropriate compounds and of the
class of the crystal structure of the compounds (Heu-
sler phases and compounds with structural classes of
the type YSiRh2, MgCuAl2, YSiPd2, etc.) were con-
structed [29]. The methods of graph theory can also be
used to predict the properties of insulators and metal-
loids (semimetals) [30, 31], one-dimensional sub-
graphs can be used to theoretically substantiate the
oxidation degree [32], and so on.

This brief overview of theoretical ideas regarding
the HTSC phenomenon and the problems of materials
science allows us to formulate several important con-
clusions:

1. Currently, there is no universal, unified theory of
the properties of materials (including the properties of
HTSCs), which would allow one to make nontrivial
verifiable predictions. In particular, no theories have
been proposed that would allow one to calculate the
temperature Tc on the basis of an arbitrary crystalline
structure, the oxygen “doping” level of a material, and
some other parameters of the material.

2. Some of the existing theoretical views on super-
conductivity admit a one-dimensional character of the
HTSC phenomenon.

3. The practical application of quantum-mechani-
cal calculations for predicting the properties of mate-
rials (including HTSCs) is limited by many additional
assumptions. As a rule, these calculations cannot be
used for large-scale screening predictions of the prop-
erties of hundreds of thousands of materials in data-
bases. In addition, these calculations do not allow the
prediction of the values of parameters that are of inter-
est to a practical researcher in materials science (the
values of the critical temperature Тс, etc.).

4. Methods of machine learning, including those
using the elements of graph theory, can be successfully
used to predict the properties of various crystalline
phases.

Note that items 1, 3, and 4 relate not only to the
problem of predicting the properties of HTSCs, but
also to almost any problem of modern materials sci-
ence. The lack of a unified theory (item 1), significant
limitations in the use of universal methods of physics
(item 3), and a certain success in machine learning
methods (item 4) allow one to consider materials sci-
ence as a classical “problem area” containing a signif-
icant number of poorly formalized problems [1].
Accordingly, various tools of algebraic theory of rec-
ognition and, in particular, topological [1], combina-
torial [4], and metric [5] approaches to the formaliza-
tion of problems, to the generation of feature descrip-
tions, and to the prediction of values of numerical
features [10] can be used for predicting the properties
of crystalline materials. The possible one-dimensional
character of the HTSC phenomenon (item 2) serves as
a basis for the application of the methods of the theory
of chemograph analysis, including chemoinvariants
based on “chains” and “nodules” of atoms [8, 9] (see
the definitions below).

3. INITIAL DEFINITIONS
The topological theory of pattern recognition and

classification [1–9] comprises the properly topologi-
cal [1, 2, 4], the combinatorial [4, 5, 8, 9] and the met-
ric [6, 7, 9] approaches to the analysis of the ill-stated
problems. The first step of the application of the topo-
logical theory of pattern recognition is to define the
primary feature descriptions, which are then used for
generation of the relevant topologies and lattices [1],
of the problem-specific metrics [7] and, then, of the
“synthetic” numerical features of 2nd level, 3rd level
etc [10].

In the case of molecules and crystalline substances
the present formalism uses the concept of chemograph
to introduce the primary features. A chemograph is a
special graph for describing the chemical structure of
substances. The need to introduce this concept has
been associated with the fundamental features of the
chemical structure of substances, which are well
known in the quantum approach of molecular orbitals
and in the chemical bond theory [8, 9].

Definition 1. A graph G is a set of vertices V = V(G)
plus a set of edges E = E(G), .

The set , which is the
set of all subgraphs of an infinite complete graph

, is the set of all possible graphs (N is the
natural series).

Definition 2. A chemograph (-graph) is a finite,
connected, nonoriented, labeled graph without loops.

The vertex set of a chemograph  is isomorphic to
the set of atoms of a substance, and the set of edges, to
the set of chemical bonds of a substance. Depending
on the variant of the formalism, a matrix M(X) =
{mij(X)}, , , can (1) be an adja-

 2E V

   2{( , ) | N, N }V E V EΓ

 2G (N,N )

Rijm , 1,..., |V(X)|i j
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cency matrix, (2) contain the multiplicities of chemi-
cal bonds, or (3) contain interatomic distances.

Define the set of all closed subgraphs  of a che-
mograph X(V,E) as  = , ,

, . The union of the set of sub-

graphs  is a subgraph , ; the intersection

 of the set of subgraphs  is  = . If the set of

subgraphs  is such that , then
 is called a generator of the chemograph X.

Definition 3. A chain  between vertices  and
 is a route  = , , …, ,

, in which all vertices are different.

According to Definition 3, we calculate the set of
all chains of a chemograph X as  =

, , 

 2, , where  is the degree

of the vertex  in the chemograph . It is obvious that
 (Theorem 6 in [8]). Accordingly, the struc-

ture of an arbitrary chemograph X can be described by
a set of chains. The generators of X can be given by var-
ious subsets of , for example, by sets of chains of
fixed length, sets of chain that include a certain set of
vertices, and so on.

Define an operator  for calculating chains whose
endpoint is a given vertex,  = ,  

, and an operator  for chains of length n as  =

, , so that  = ,  =
, . Then the following generators of the

chemograph X are obvious:  = X and

 = X, ,  = 

(Theorems 7 and 8 in [8]). Denote .
Definition 4. A connected subgraph is a subgraph in

which at least one elementary chain passes through
any pair of vertices.

By Definition 4, the set of connected subgraphs of
a chemograph X is defined as  = { = (v,

,    :

  . It is obvious that , 1,
,  ⇔ , x 
 is a chemograph, and  (Theo-

rems 4, 5, and 6 in [8], respectively).
Definition 5. Nodules are constructs of the form

, i.e., connected subgraphs consisting of the
adjacency set  of a vertex  and all edges
incident to  [8]. A k-nodule in a chemograph X is a

( )XΠ
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subgraph consisting of a vertex , all k edges incident
to it, and all the other vertices incident to the k edges.
All nodules of a chemograph X form a set  =

, , , which
implies that  (Theorem 10 in [8]). Similarly,

 = , , ,  
.

According to Definition 1, chemographs are
labeled graphs.

Definition 6. Suppose given a set of labels Y = { ,
, …, }. Then the labeling of a chemograph is per-

formed by the corresponding vertex labeling function

V : V  Y. For a given label set,  is the set
of all permutations over Y.

For most problems of chemoinformatics that deal
with organic molecules, some relatively simple label
sets based on the combinations of atom types (C, N,
O, S), their charges, etc., are quite sufficient. In the
case of chemoinformatics problems that arise in mate-
rials science, the label sets will be more complex, but
can also be based on the combinations of atom types,
oxidation degree, charge, and so on. In actual initial
representations of substances (sets of internal coordi-
nates of the unit cell of a crystal, sets of Cartesian
coordinates), the types of atoms are always indicated,
so that methods for determining the function V are
quite obvious to an expert in the problem area.

Definition 7. A -chain is an element  of the set of
all -chains,  = ,  =

,  = .
Denote the set of all -chains of length n by

.

Definition 8. Let  = ,

. Then we define a -k-nodule as an ele-

ment of the set  = , and a -nodule , as
an element of the set of all -nodules  =

, where maxV is the maximum possible
valence of chemical elements in D.I. Mendeleev’s
periodic table.

Definitions 3, 7, and 8 of the sets  and 
obviously imply the following lemma.

Lemma 1.   .

Corollary 1.  =  =
X.

Corollary 2.  =

 = X for  (see the definition of

the operator ).

v
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Corollary 3.  = X (see Defi-
nition 5).

According to Lemma 1, the set  of chains of an
arbitrary chemograph X is uniquely mapped to the
subset of the set of -chains  by the labeling func-
tion , and the set  of all k-nodules of
X, to the set of -nodules  by the function

.

The existence of inverse mappings  and  is an
important issue for investigating the isomorphism of
chemographs by establishing the completeness of their
invariants (see below). In general, there is no question
of the existence of surjective inverse mappings

 and , because there exist
obvious counterexamples (-chains constructed over
the set of edges, etc.).

Nevertheless, some inverse functions that map the
sets of -chains and -nodules into subgraphs are
guaranteed if we operate not with the sets  and  but
with the sets  and . Define the operator

 of constructing a preimage of a -chain 
as  = , and the operator

 of constructing a preimage of a -nodule 
as  = . Thus, the operators 

and  construct subsets of kernel equivalence in the
corresponding sets of subgraphs.

Note that the -chains (Definition 7) and -nod-
ules (Definition 8), which are introduced on the basis
of the given labeling function (Definition 6), are
mathematical descriptions of the one-dimensional
and the nodular substructures of crystals. As such,
they can correspond to the one-dimensional physical
character of the HTSC phenomenon mentioned in the
Introduction. Indeed, in a perfect monocrystal, -
chains correspond to fragments of chains of atoms that
pass through the entire crystal. Lemma 1 and Defini-
tions 6–8 provide a natural “bridge” between the tools
of the theory of chemographs [8, 9] and the generation
of the feature descriptions of crystals, required for the
prediction of the properties of crystalline materials.

4. COMBINATORIAL ANALYSIS
OF THE ISOMORPHISM OF CHEMOGRAPHS

In spite of the use of the infinite set  in the axio-
matics of the theory of chemographs (Definitions 1–
9), practical applications of this theory deal exclusively
with finite samples of descriptions of physical objects.
Hence, one can apply combinatorial and metric meth-
ods of the theory of solvability/regularity analysis [1–
7] to the practical analysis of chemographs. Within
this theory, sets of the feature descriptions and of the
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classes of objects to be tested are first defined and then
the solvability/regularity of the classification problems
and the correctness/completeness of the correspond-
ing algorithms are analyzed. The problem of introduc-
tion of the feature descriptions of chemographs is
closely related to the central problem of graph the-
ory—establishing an isomorphism relation between
two arbitrary graphs.

Definition 9. Graphs  and  are isomorphic
( ) if there exists a one-to-one correspondence
between their vertices and edges that preserves the
adjacency of the vertices and the incidence of the
edges.

Let  be the set of all graphs isomorphic to a
graph . Then  is equivalent to the statements

 = , , and . The verifica-
tion of each of these conditions is characterized by
high computational complexity (O(n!) or, at best,

  ). Therefore, for practical pur-
poses, the analysis of some necessary conditions of iso-
morphism of arbitrary chemographs  and , such
as, for example,  =  or  = 
(which follow from Lemma 1), becomes important.
The necessary conditions of isomorphism of graphs
can be expressed as equalities of some numerical char-
acteristics of graphs—of the so-called invariants.

Definition 10. An invariant of a graph is a function
, ,  :  ⇒ . An

elementary invariant is an invariant of the form
,  =  :  
, a tuple invariant is an invariant of the form
, . An invariant is said to be complete if

it satisfies the condition of completeness of an invariant:
 ⇔ . A pair of graphs that

have the same value of an invariant are said to be iso-
meric with respect to a certain value of the invariant.

-Invariants are invariants of chemographs, that are
based on the relations of membership of -chains and
-nodules in chemographs. According to Lemma 1,
the existence of  implies the existence of relations
between -chains, as elements of the set , and a given
chemograph X.

We say that a -chain  belongs to a chemo-
graph Х, , if . Accordingly, the mem-
bership of a -nodule  in Х, , corresponds
to . It is obvious that tuples composed of
these membership relations for arbitrary subsets of the
sets  and  are also -invariants. The
-invariants of a chemograph X can be both binary
(i.e., they can map the relation itself ,

) and numerical (such as the number of sub-

1G 2G
1 2G G

( )GI
G 1 2G G

1( )GI 2( )GI 2 1( )G GI 1 2( )G GI

 1
( !)

m
ii

O n  ( !)O n

1X 2X


1( )Y X 
2( )Y X 1

ˆ( )Y X 2
ˆ( )Y X

 : nRΓ  Nn  a Γ  ( )b aI   ( ) ( )b a

 : RΓ   Ε    { : |R aΓ Γ  ( )b aI 
  ( ) ( )}b a
 : nRΓ  2n

  : ( )a b GΓ I   ( ) ( )a b

c
Y

  Y
  X   ( )Y X

  Ŷ   X
  ˆ( )Y X

( )Y X ˆ'( )Y X

 ( )X
 ( )X



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 30  No. 2  2020

TOPOLOGICAL DATA ANALYSIS IN MATERIALS SCIENCE 267

graphs in  that correspond to a given -chain 
or a given -nodule ).

Define the operator of membership of a set of sub-
graphs  in a chemograph X  as  =

, , and the operator of the num-
ber of occurrences of the set of subgraphs  in X

 as  = , . Since
 and , according to Lemma 1 and

Definition 10, the expressions , ,
, and  are elementary -invariants.

It is obvious that  and  are numeri-
cal -invariants, and  and  are binary
-invariants. Denote the result of the application of the
operator  to the set of -chains  by

=  and the result of application of
the operator  to the set of -nodules  by

 = . Denote the result of the applica-
tion of the operator  to the set  = ,

, by  = , and of the operator
 to the set , respectively, by  = , ...,

.

Consider a more general case. Let ,
, be a tuple invariant constructed over a set of n

elementary invariants . For a given graph G, the
expression  =  denotes the set of
values of invariants from . Define a function of enumer-
ation of elementary invariants, . Then the
operator of formation of a tuple invariant  by a
given  is defined as  = , , , …, ,

 =  < … <  = n. Denote the value of
the ith element of the tuple  for the graph G by

 =  = i.

Theorem 1. If  ⇒ 
:  ≠ , then  is a complete invariant.

Let us write the condition of completeness of an
invariant (Definition 10) in a form corresponding to
the pairwise comparison of the graphs a and b:

 = . The equivalence
relation between the values of the invariants corre-
sponds to the partition of the set of all graphs into
classes of isomorphic graphs. The classes of isomor-
phic graphs over the set of all graphs  form the set of
all classes of isomorphic graphs  = .
For a pair of nonisomorphic graphs, the intersection
of the corresponding elements from  is empty.
Since  is an invariant by the hypothesis of the theorem
(i.e.,  = ), we write
the condition of completeness of an invariant in the

( )XΠ 


π  ˆ : {0,1}Π ̂[ ]X π
  ( ( ) )Xπ Π  π Π

π
 ˆ : RΠ ̂[ ]X π  ( )Xπ Π  π Π
  ( )Y X   ˆ( )Y X

  1ˆ ˆ[ ] cX 
  1ˆ ˆ[ ]X

  1ˆ ˆ[ ] cX 
  1ˆ ˆ[ ]X

  1ˆ ˆ[ ] cX 
  1ˆ ˆ[ ]X

  1ˆ ˆ[ ] cX 
  1ˆ ˆ[ ]X

 1ˆc    { }Yα
ˆ 1
cμ α    1ˆ{ , }c α




1ˆ    ˆ{ }Yκ
ˆ 1μ 


   1ˆ{ , }κ

̂ π 1 2{ , ,..., }nπ π π
 π Π β̂π   1 2

ˆ ˆ ˆ{ , ,..., }nπ π π
̂ π η̂π  1 2ˆ ˆ{ ,π π
̂ }nπ

 : nRΓ
 2n

eι Ε
( )Geι  { ( ), 1... }i G i n

eι
 : Neι

 ˆ : 2 nRE

eι ̂ eι   ( , ,..., )j k l  j k  l eι
 ( )j   1 ( )k  ( )l

̂ eι
̂[ ] ( )i Geι   ( ) | ( )G

    , : ( ) ( )a b a bΓ I I
 1..i n

i
̂[ ] ( )i aeι ̂[ ] ( )i beι ()

  , : ( )a b aΓ   ( ) ( ) ( )b a bI I

Γ
( )I Γ { ( ) | }a aI Γ

( )I Γ

 , : ( )a b aΓ I    ( ) ( ) ( )b a bI

form  = . It is
obvious that the inequality of the values of two tuples
corresponds to the existence of at least one position of
these tuples at which there are two different values of
the elementary invariant. Then, substituting  in the
form of the tuple , we obtain a completeness crite-
rion for tuple invariants in the assertion of the theo-
rem. The theorem is proved.

Corollary 1.  =
 ⇒  :  ≠ , where  =

.
Suppose that, for an arbitrary X, there exists a non-

empty set  such that  = X. In view of the
existence of the bijection, a single occurrence of each

 in X implies the one-to-one correspondence of
each  to a certain chain in X. Since  =
X, it follows that  = . Therefore, both

 =  and  are
satisfied, which necessarily corresponds to the exis-
tence of a distinguishing element in the hypothesis of
Corollary 1.

Corollary 2. The assertion of the theorem is valid for
a set of -nodules   = {  

= 1}, , ; here  =  
}. By construction, there is a bijection between the sets

, , and .
The proof is analogous.
Corollary 3. Over the sets  and , one can

form irreducible covers of X.

This is obvious from . Irreducible
covers can be found by a complete enumeration of
combinations of elements  or by reduced enu-
meration methods (for example, within the metric
approach to data analysis [6, 7]).

Corollary 4. Complete invariants can be formed over
 and  if, for every chemograph X, there are

 =  and  = { 

 = 1} such that  for  =

.
This assertion follows from the uniqueness of the

occurrence of elements in  and . Note that,
in the case of existence of ,  and 
may be empty.

Corollary 5. Suppose that each graph  in a finite set
 is labeled by an isomorphism label

 so that the solvability criterion of a
classification problem is expressed as  ≠

. Then the solvability criterion is
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equivalent to the condition of local completeness of an
invariant:  ⇒  :  ≠

.
Corollary 6. The problem of recognition of isomorphic

graphs is solvable if and only if the sum over the set Pr of
the cardinalities of the differences between the class of iso-
meric graphs and the class of isomorphic graphs is zero.

Define —the operator of constructing a class of iso-
meric graphs (Definition 10) for a given graph G and
an invariant —as  = , so
that the condition of completeness of  is  :

. Suppose that graphs from Pr, iso-
morphic to , form a local set of isomorphic graphs

 = , ,
and the graphs isomeric to  form a local set of isomeric
graphs  = , 
 . Then  =  and,

respectively,  = 0.

Corollary 7. Let  be an invariant and  = 1 –

. The invariant  is com-

plete if and only if  = 1.
This is obvious from Corollary 6.
Corollary 8. Define an operator  of selecting

the subset of the pairs of chemographs for each of which there
is a difference in the i-th position of the tuple invariant ,

 = , . Sup-
pose that a set  is such that    = 

for every i and j, . Then  = ,

where  = .
This is derived from Corollaries 6 and 7.
Thus, Theorem 1 states that a tuple invariant is a

complete invariant if there is a distinguishing element
for an arbitrary pair of nonisomorphic graphs. The
equivalence relation on the set of initial descriptions,
defined by the isomorphism label , corresponds to
the expert assessment of the equivalence of two arbi-
trary crystal structures (for example, the coincidence
of the partial coordinates of atoms, the space group, all
parameters of the lattice, and occupancy of atoms to
within the error of the method).

Within the present formalism, tuple invariants of
chemographs are considered as vectors of feature
descriptions of objects on the basis of which the solv-
ability/regularity properties of the problems of classi-
fication of chemographs are tested. The indicator

 obtained in Theorem 1 is a quantitative combi-
natorial estimate of the completeness of the tuple
invariant  over the set of precedents Pr, and the indi-
cators  allow one to estimate the contribu-
tion of each element of the tuple. It is expedient to
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construct the enumeration function  of tuple
elements on the basis of functionals that estimate “infor-
mativity.” Such functionals can be used to select infor-
mative values of features [2, 33, 34], which allows one to
find locally complete invariants for a relatively small
number of elementary invariants included in the tuple.

5. DISTANCE FUNCTIONS BETWEEN 
CHEMOGRAPHS AND THE METRIC 

APPROACH TO THE ANALYSIS 
OF THE ISOMORPHISM OF CHEMOGRAPHS

Theorem 1 is not only necessary for the computa-
tional testing of the local completeness of various tuple
invariants of chemographs. Theorem 1, together with
the corollaries, provides a fundamental basis for con-
structing metric distance functions between chemo-
graphs (that is, metrics on a set of chemographs).
Within the present formalism, the distance function

 between chemographs X1 and X2 is a func-
tion of the type  that depends on the
given tuple invariant ( ). The value of the tuple invari-
ant  for a certain chemograph represents a vector in
the space , and let us recall that the generation,
analysis, and application of distance functions over
vectors in  is one of the most important directions in
data mining [35].

To introduce a metric, one can use binary and
numerical elementary invariants ( , ,

,  etc.) arranged in some order
(defined by the function ); each tuple ele-
ment can be assigned a certain weight, etc. In view of
Theorem 1, of special interest is the use of the tuple
invariants based on elementary -invariants over vari-
ous sets of -chains and -nodules.

It is obvious that the property of completeness of an
invariant  considered in Theorem 1 is needed for the
invariant to be used in the construction of the metric
distance functions. Indeed, the value of 
should be zero for isomorphic X1 and X2, while, for
nonisomorphic graphs, the value of 
should be strictly greater than 0 (the first metric
axiom). Indeed, this axiom holds for complete (or, at
least, for locally complete) invariants.

Suppose given an arbitrary set of -chains 
and an arbitrary set of -nodules . Define a set
of subgraphs , , over which -
invariants will be formed.

Introduce a metric over the set of binary -invari-
ants. Let us form a set of elementary -invariants

=  = , . Take an
enumeration function  and form a binary tuple

 : Neι
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invariant  = . Define a distance function

 =   

(  are the weights of elementary invariants; in the
simplest case,  = 1) over binary -invariants, which,
by construction, is the Hamming metric (provided that
the invariant  is complete).

Introduce a metric over a set of numerical -invari-
ants. Define a set  =  = ,

, take a function , and formulate (locally) a
complete invariant  = . By construction,
the function  =

 is the Minkowski
metric, whose particular case is given by the Euclidean
metric (p = 2,  = 1).

The introduction of a metric on the set of objects
(i.e., chemographs) provides a basis for the metric
analysis of the solvability/regularity criteria for prob-
lems and the correctness/completeness criteria for
algorithmic models [5–7]. The metric forms of these
criteria for a two-class problem over the set of prece-
dents ,  with the classes

 and  (  and ) are for-
mulated with the use of the metrics , which can be
represented by the metrics  and  proposed
above. Then the solvability criterion for the problem
Z( ) is calculated as  ⇒

> 0 and the regularity criterion, as
 > 0. For the existence of a correct

algorithm, it is sufficient that the condition
 is satisfied, where  =

 >  is a combinatorial func-

tional that estimates “ -compactness” of the sets of
objects  in respect to the entire set M. The values
of the functional  can be estimated by the subqua-
dratic methods of analysis of metric condensations [5].

6. METHODS FOR PREDICTING 
NUMERICAL TARGET VARIABLES

To solve materials science problems, including the
quantitative prediction of the properties of HTSCs,
one needs, first, the methods for generating feature
descriptions of chemographs and, second, the algo-
rithms for predicting the corresponding numerical
variables. Such algorithms have been developed within
topological and lattice-theoretical interpretations of
the generation of synthetic numerical features [10].
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To any variable with a finite set of values  = ,
, …, , …, , there corresponds a set of

disjoint subsets  of a finite set of precedents Q.

In the case of a numerical kth variable, the set  is lin-
early ordered (     ), so that, to each value
of , there corresponds a subset  =

 of the set of precedents. The definition

of a pair of classes  = ,  = ,

, , for each  defines a
classification problem solved by the algorithm .

The prediction of the kth numerical variable can
thus be made by the algorithm   R, where

 is a set of admissible feature descriptions (typically,

) and  is a vector of parameters. The

algorithm  allows one to calculate, on the basis
of the data in the information matrix  (i = 1, …,
N), the column of the corresponding values of the kth
variable. The algorithm  can either “directly”
predict the values of the kth variable (regression algo-
rithm or “neural networks,” for instance), or it can be
made as a composition of the classification algorithms

. One can apply various methods to determine
the values of the vectors : methods of computa-
tional linear algebra (singular decomposition, etc.),
neural networks, stochastic approximation, and so on.

The prediction of numerical variables can be made
within chemometric approach as the problem of match-
ing the values of a certain “expert” metric  and a
“feature” metric with weights (i.e.,  or ) accord-
ing to the following criteria:

(1.1)

(1.2)

A practically important particular case of an expert
metric is given by a metric based on a scalar (that rep-
resents the numerical variable to be predicted). This
“one-dimensional” metric satisfies all three metric
axioms (since they are valid for any three different
points on the real axis). In this case, each of the criteria
(1.1) and (1.2) is, actually, equivalent to an additive
scheme that involves the summation of feature values
with weights followed by the application of a correct-
ing operation (a corrector function). Indeed, suppose
that the zero element {0} appears in all the sets , so
that one can determine the distance from the zero ele-
ment to any other element of the set  by a scalar
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expert metric . Then one can reformulate criteria
(1.1) and (1.2) in terms of the distance from the zero ele-
ment and make a transition from the estimate of the pair-
wise distances to the summation over all objects; i.e., one
can calculate the value of the corresponding sum of resid-
uals. In this case, the “machine learning” problem is for-

mulated as ,

where  is the value of the predicted numerical
variable for object .

7. APPLICATION OF THE CHEMOGRAPH 
ANALYSIS FORMALISM
IN THE FRAMEWORK 

OF THE TOPOLOGICAL APPROACH TO DATA 
ANALYSIS TO THE PROBLEMS 

OF PREDICTING THE PROPERTIES
OF CRYSTALLINE MATERIALS: AN EXAMPLE 
OF PREDICTION OF Тc FOR CUPRATE HTSCs

The formalism developed allows one to pass from
the set of initial descriptions of the structures of mate-
rials to feature descriptions acceptable for “machine
learning” algorithms. In this study, by the initial
descriptions are meant the internal coordinates of
atoms in a unit cell together with the space group and
the lattice parameters. From this representation, one
passes to the Cartesian coordinates of atoms and then
to the tuple invariants based on -chains and -nod-
ules, developed in this study (Theorem 1). To test the
algorithms following from the formalism proposed, we
used a set of labels Y comprised of Cartesian products
of the chemical types of the elements by their admissi-
ble oxidation degrees (  = 548).

Before the application of the prediction algo-
rithms, one should determine the optimal values of the
parameters n and k that are used to generate the fea-
ture descriptions of chemographs. To this end, we car-
ried out combinatorial testing of the completeness of

ed


  1{ },

arg min  ({ },{0}, ) ( )
i

N
i m mmp

d X T X

( )jT X
jX

Y

invariants from the families  (n = 1…7),
 (k = 3…7), and   .

For each tuple invariant, we calculated local complete-
ness estimate  (Corollary 7 of the Theorem 1).

The completeness of the tuple invariants (i.e., the
solvability of the appropriate problems, see Theorem 1
with corollaries) was tested on a sample of 125000
pairwise different structures of substances from the
ICSD database [36]. The coordinates of atoms in the
unit cell of each crystalline structure were transformed
from partial to Cartesian coordinates. Then, by trans-
lations of the corresponding Fedorov’s group, we
obtained Cartesian coordinates for the atoms of a cube
consisting of 27 unit cells. In this array of Cartesian
coordinates, we determined all -chains and -nod-
ules by the complete enumeration algorithm. The cri-
terion of contact of atoms was the overlap of the ionic
radii with a tolerance of 0.1 Å. The experiments have
shown the potential of the use of all three families of
-invariants for generating binary tuple invariants.
The results of experiments with the family of invari-
ants  (-chains of fixed length) are pre-
sented in Fig. 1.

The estimate of the completeness of the binary
tuple invariants over the sets of all -chains of length n
has shown that the “qualitative composition” of a che-
mograph (n = 1, i.e., the presence of labels of atoms of
specific type) is similar for 50% of pairs of nonisomor-
phic chemographs (  = 0.50). The use of a qual-
itative edge composition of a chemograph (n = 2, i.e.,
the presence of paired combinations of atomic labels)
has significantly increased the accuracy of distinguish-
ing between isomorphic and isomeric chemographs
(  = 0.79). An increase in the length of a -chain
led to a monotonic increase in the combinatorial esti-
mate of the local completeness of the corresponding
tuple invariants, and the estimate of  reached a
value of 0.98 already at n = 4. Therefore, from a prac-
tical viewpoint, chains of length 4 are quite sufficient
for the existence of locally complete tuple invariants.
The difference from the molecules of organic sub-
stances (where the completeness of an invariant is
reached only at n  7) is quite understandable: the
dimension of the dictionary for labeling the atoms of
organic molecules was much lower (|Y| = 20) [9].

On the basis of the invariants , we have
formalized the problem of quantitative prediction of
temperature Тс for a sample of 1450 structures of
cuprate HTSCs for which the temperatures Тс were
known (data from the ATOMWORKS database [37]).
The efficiency of various algorithms for solving the
problem was estimated in cross-validation experi-
ments, which included ten random partitions of the
entire sample into “6 : 1 training-test” sets of objects.
As , we used functionals based on the exact
Fisher’s test [10].
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Fig. 1. Calculation of the local completeness ( ) of
tuple invariants over -chains of fixed length.
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To generate synthetic numerical features, we used
the algorithm  =   ,
which is a composition of the recognition operator 
and the correction operation  over the set of prece-
dents . For linear recognition operators , the
correction operation  was either a linear transfor-
mation, a logarithm, an exponential function, a power
law function, a neural network of certain configura-
tion, etc. [10]. To calculate the vector  of the algo-
rithm  and the metric , we used a singular
decomposition, neural networks, and multistart sto-
chastic approximation [10]. Preliminary experiments
showed that an optimal solution of the problem of pre-
dicting the critical temperature Tc can be obtained for
linear operations  and  with the use of stochastic
approximation to determine the vector  (  = 0.77 in
cross validation, Fig. 2).

Thus, the application of the simplest model with
linear operators  and  and sto-
chastic approximation for finding the vector of param-
eters  has allowed us to obtain a noticeable correla-
tion between the predicted and the experimental val-
ues of the critical temperature of the superconducting
transition. Note that this linear model was imple-
mented under the assumption of a perfect crystalline
structure, without taking into account powder micro-

ˆ ( (Pr))kbA ( (Pr))kbB  ( (Pr))kbC
kbB

kbC
Pr kbB

kbC


ˆ ( (Pr))kbA bd

kbB kbC
 r
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crystallinity or the occupancies of atomic positions,
which are related to the oxygen doping of the HTSC
crystal. The presence of horizontal strips in Fig. 2 is
partially attributed to the fact that the occupancies of
atomic positions have not been taken into account.

In contrast to the methods of “deep learning,” neural
networks, etc., the present formalism allows one to
obtain interpretable results. In other words, the analysis
of the features generated by the methods of analysis of the
completeness of the tuple invariants studied has allowed
us to obtain results that are potentially important for
deeper understanding of the problem area. For example,
the calculation of the values of the indicator 
(see Corollary 8 to Theorem 1) and of the weights  of
the elementary invariants has allowed us to reveal the
types of atomic chains with the maximum absolute con-
tribution to the calculated values of Тс (Table 1).

For example, in mercuric HTSCs (HgBa2CuO4 + 
[38, 39], HgBa2CaCu2O6 + , and others), the atomic
chain HgOBaO made the maximum contribution
to Тс (+6.08 K), while the chain “Hg-O-Hg-O,” con-
versely, promoted the reduction of Тс (–1.77 K). In
the case of bismuth-containing HTSCs Bi2Sr2CuO6+
[40], Bi2Sr2CaCu2O8 + x, and others, the maximum
contribution was made by the “Bi-Cu-O-O”
(+6.49 K) and “BiOOCa” (+5.92 K) chains,
whereas more widespread “BiSrOO” and “BiO
BiO” chains made close contributions (on the order
of +4.1 K). In the case of lead-containing HTSCs
Pb3Sr4Ca3Cu6Ox, Pb2Sr2(YxCa1 – x)Cu3O8 + , and oth-
ers [41], the “PbOOSr” and “PbOCuO”
chains made a positive contribution to the increase of
Тс, while the chain “PbOSrO” made a negative
contribution (–1.83 K). In the case of all Ba, Ca-con-
taining cuprate HTSCs, the widespread chains “Ba
OCaO,” “CuOBaO,” and “CuOCaO”
made positive contributions to Тс (+5.27…7.43 K),
while the less widespread chains “BaBaOO” and
“CuBaOO” made negative contributions (on the
order of –1.4 K). In this case, the contributions of
structurally similar chains “CuOBaO” and
“Cu‒OCaO” were sufficiently close (+5.27 K and
+5.49 K, respectively).

The generalization of the results of algorithm
adjustment (first of all, the weights  for specific
chains) to other chemical elements, oxidation degrees,
etc., is an important problem for the practical applica-
tion of the developed algorithms for predicting Тс.

First, one can develop special alphabets of labels Y
for specific problems that include some abstract
“meta-elements.” Recall that D.I. Mendeleev’s peri-
odic table is a discrete system based on the monoto-
nicity of variation of the properties of elements within
groups/periods. The property of monotonicity allows
one to define various types of “meta-elements” that may
contain both whole groups/periods of elements and cer-
tain subsets of elements from the same group/period.

 ̂( , ,Pr)iχ
i

i

Table 1. Examples of atomic chains with maximum weights
in a linear model for calculating Тс. The chains are arranged
in decreasing order of weights .

Chain , K

Ba–O–Ca–O 0.108 7.43
Bi–Cu–O–O 0.048 6.49
Pb–O–O–Sr 0.048 6.31
Hg–O–Ba–O 0.036 6.08
Bi–O–O–Ca 0.008 5.92
Cu–O–Ca–O 0.607 5.49
Cu–O–Ba–O 0.382 5.27
Y–O–Cu–O 0.575 5.04
Pb–O–Cu–O 0.061 4.92
Y–O–Y–O 0.595 4.72
Eu–O–Eu–O 0.016 4.33
Y–O–Ni–O 0.011 4.3
Bi–Sr–O–O 0.178 4.16
Bi–O–Bi–O 0.269 4.11
Cu–Ba–O–O 0.047 –1.42
Ba–Ba–O–O 0.045 –1.48
Hg–O–Hg–O 0.019 –1.77
Pb–O–Sr–O 0.085 –1.83
Tl–O–Ba–O 0.013 –2.11

i

 ̂( , ,Pr)iχ i
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Second, the already obtained results allow us to
juxtapose chains differing only by a single atom in a
certain position (see above the example of the chains
“CuOBaO” and “CuOCaO”). In our opin-
ion, a comparative analysis of the weights of such
chains is a quite promising direction of research.

8. CONCLUSIONS

Within the application of the mathematical meth-
ods of recognition and “data mining” [35] to problems
of the materials science, the choice of the primary and
“synthetic” feature descriptions of the object is of fun-
damental importance. In this paper, we have pre-
sented the results of application of the methods of
topological analysis of poorly formalized problems
(including metric data analysis and of the theory of
chemographs) to the problems of predicting the prop-
erties of crystalline materials. The formalism devel-
oped and the corresponding machine learning algo-
rithms have been experimentally tested on a sample of
crystalline structures of cuprate HTSCs for each of
which the temperature Тс was measured. Note that the
applicability of the methods developed is by no means
restricted to predicting Тс or other parameters of high-
temperature superconductivity. The existence of the

so-called “topological materials” or “topological
phases” suggests that many electrical, mechanical,
and other properties of materials can be attributed to
processes that admit a two-dimensional or even a one-
dimensional mathematical description (which corre-
sponds to elementary chain invariants investigated in
the present cycle of studies on the theory of chemo-
graphs). The theoretical results obtained imply that,
under the condition of the completeness of a “chain”
of invariants, the latter allows one to generate univer-
sal feature descriptions of crystalline structures, which
can be used for solving the problems of predicting var-
ious properties of crystalline materials.
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