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Abstract—Analysis of criteria for the solvability/regularity of problems and of the correctness of algorithms is
applied here to the problem of prediction of the values of numerical variables. It is shown that partial regular-
ity is a necessary and sufficient condition for the solvability of the corresponding system of the classification
problems. Cross-validation experiments conducted on several datasets from the field of biomedicine (non-
invasive diagnostics of magnesium concentration in blood plasma), bioinformatics (prediction of the protein
secondary structure), and solid-state physics (prediction of the properties of high-temperature superconduc-
tors) have demonstrated the effectiveness of the developed methods for generating “synthetic” informative
numerical features and for increasing the accuracy of prediction of the numerical target variables.
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1. INTRODUCTION
Poorly formalized problems (i.e., classifica-

tion/prediction problems for which there are no
unequivocal methods for defining the objects, the
classes, and the feature descriptions of the objects) are
widely studied in biomedicine, chemoinformatics,
bioinformatics, solid-state physics, applied linguistics,
and other fields of modern science [1]. A systematic
approach to the study of formalization methods for
such problems is fundamentally important for the
improvement of the accuracy and generalizing ability
of the appropriate algorithms.

In [1], the present authors demonstrated that the
formalization of any poorly formalized problem can be
considered as a series of successive transitions from the
set of original descriptions to a particular topology,
then to a lattice, and then to a certain metric space.
The formalization of a problem provides a general
structure to describe information on objects: a set of
initial information (Ii) and a set of final information (If),
which allows one to form a set of precedents (a subset of
the product ), and then to apply the construc-
tions of the algebraic approach to the solution of rec-
ognition/classification/prediction problems [2, 3].

×i fI I

Within the algebraic approach developed in the sci-
entific school of Academician Yu.I. Zhuravlev, for
given sets Ii and If, one analyzes the properties of the
set of precedents and of the algorithms 
(  is a vector of internal parameters of an algorithm)
that solve the problem. The algorithm  is often an
element of an algorithmic model  (  is a method
for calculating the vectors ) and is constructed as a
superposition  involving a
recognition operator B, a correction operation C, and a
decision rule D [2]. The properties of solvability/regu-
larity of the problems (existence theorems of a solu-
tion) and correctness/completeness of the algorithmic
models (which characterize the quality of the solu-
tions) are fundamental components of the algebraic
approach to recognition.

Earlier, the present authors formulated fundamen-
tal principles of the factorization [4] and of the metric
[5] approaches to the analysis of poorly formalized
problems and obtained metric forms of the solvability,
regularity, correctness, and completeness criteria of
the algebraic approach. In particular, the analysis of
the compactness of metric configurations [6, 7] has
allowed the authors to obtain sufficient conditions for
the existence of correct algorithms. Cross-validation
forms of the criteria allow one to assess not only the
quality of formalization but also the extent of “overfit-
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tedness” of the procedures used for the selection or
generation of the feature descriptions within the algo-
rithms studied [5].

The criteria obtained in [1–7] were formulated for
classification problems. In other words, the target
“output” variables of these algorithms represent Bool-
ean variables that predict the membership of an object
in relation to a certain class of objects (so-called qual-
itative prediction). At the same time, in many applied
problems, especially in the problems arising in natural
sciences, one actually needs a quantitative prediction,
i.e., calculation of numerical values of some “output”
variables.

Solutions of the problems of predicting numerical
target variables in computer science are often sought as
“neural networks,” (including “deep learning” net-
works). Note that the latter word combination is a
newfangled term for the paradigm of constructing
multilevel perceptrons, which have been known in
cybernetics since the early 1960s [8] at the very least.
Within this paradigm, the input information presented
in a set of precedents (first-level features) serves as a
basis for calculating the values of some intermediate,
so-called “hidden,” variables (features of the second
and the higher levels), and by the values of these “syn-
thetic” variables one calculates the values of the target
variable(s).

Despite extensive media coverage with the use of
such terms as “neural nets,” “deep learning,” and so
on, real research data indicate that the claimed
increase in the “recognition accuracy” achieved with
the use of these methods is accompanied by an appre-
ciable decrease in the generalizing ability due to the
most apparent “overfitting” phenomenon. In the case
of classification problems, computational experiments
with the algorithms of the “deep learning” type show
that the error rate  on a “training” dataset (which is
used to adjust the internal parameters  by method )
is, as a rule, much lower than the error rate  on an
entirely independent test dataset. The difference  =

 –  is called the overfittedness, and  > 0 indi-
cates that the corresponding classification algorithm is
overfit with respect to the datasets studied.

In other words, positive values of overfittedness
imply too strong a “fitting” of some elements of the
vector  to the specific training sample used and that
is responsible for the decrease in generalizing ability.
The problem of overfitting indicates the utter necessity
of cross-validation testing, since a combinatorial cal-
culation of errors within a sliding control setup of data
analysis characterizes the generalizing ability of an
algorithm considerably better than any “theoretical”
probability of overfitting [9].

Even without a rigorous analysis, it is entirely clear
that, in the case of deep-learning-type prediction sys-
tems, the addition of each new level of “hidden” fea-
tures increases the number of the algorithm’s parame-
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ters (i.e., | |) thus increasing complexity of the model
which only further promotes the overfitting of the
algorithms thus developed. To reach a balance
between the generalizing ability of algorithms and the
complexity of the prediction models (the number,
dimension, configuration of the levels of variables,
and so on), one should operate directly with the data
layers, which are by definition “hidden” in so-called
“deep learning.” In this case, one successively adds the
variables using a cross-validation control of the gener-
alizing ability, thus assessing the efficiency of the algo-
rithms at each step of the “machine learning” proce-
dure (using, in particular, the solvability/regularity
and correctness/completeness functionals [4] as
guidelines).

Here, we present elements of a theoretical substan-
tiation for the procedures of generation of “synthetic”
numerical features over partitions of the sets of objects
in the framework of predicting numerical target vari-
ables. The formalism has been developed within the
scope of topological [1] and metric [5] approaches to
the formalization of the problems and the algebraic
approach to recognition [2, 3]. We consider the prop-
erties of the partitions of sets of objects produced in
accordance with the values of a numerical target vari-
able. Then we present the results of appropriate exper-
iments that demonstrate the practical applicability of
the developed approaches to data mining.

2. MAIN DEFINITIONS

Let  be a set of original
descriptions of objects; , where  is the space of
admissible objects; let  be the space of admissible
descriptions of objects; and let the function

 assign an object  its admissible
description . A sampling operator of the set X, ,
forms a set of samples  = , 
similar to some procedures of formation of subsamples
of objects in a cross-validation experiment.

Let  and  ×
In+2 × ... × In+1, where  are the sets of values of the k-
th feature descriptions (including information on the
output parameters defined by the elements of the set

) and , , ,  are the sets of
all possible values of the k-th component of the formal
description, k = 1, … ,n + l, where  is the uncertainty
(the value of the variable is undefined). The formal-
ization of a problem corresponds to the definition of
the functions , k = 1, …, n + l, that gener-
ate the values of the appropriate components of the
corresponding formal description on the basis of the
original description , so that . In
this case, the set  is the complete preim-
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age of  in the set . Recall two well-known
definitions:

Definition 1. Suppose given arbitrary sets A, B, C,
and D and functions  and . Then
the Cartesian product of the functions  and  is defined
as a function  such that

 =  for any  and .
Definition 2. Suppose given sets A and B and a func-

tion h of m arguments, . Then a diagonal-
ization of the function h is a function  such
that  for any .

Define a function  as a diagonalization
of the Cartesian product of functions . For given

,  × , and ,
the function  is defined as  =  ×

 × . The function  naturally
corresponds to the function ϕ: , ϕ(X) =

.
Thus, the formalization of a problem corresponds to

the definition of a function ϕ:  for the transi-
tion from some set of original descriptions of objects in
the problem domain ( ) to the set of precedents

 = , ), .
Each element of the set  represents a concatenation
of the i-th rows of the corresponding information

matrix , , and the matrix of infor-

mation , . The definition of a func-

tion  for a specific problem is a subject of the corre-
sponding problem-oriented theory and allows one to
form the corresponding set of precedents  and clas-
sification/prediction problem  for an arbitrary
sample .

3. PROBLEMS OF PREDICTING NUMERICAL 
TARGET VARIABLES AND GENERATING 

SYNTHETIC NUMERICAL FEATURES 
WITHIN A LATTICE-THEORETICAL 

INTERPRETATION OF THE 
HETEROGENEOUS FEATURE 

DESCRIPTIONS
The methods of discrete mathematics (lattice the-

ory, graph theory, etc.) provide a natural tool for the
analysis of real-world data, which are always repre-
sented in the discrete form due to the limited number
of precedents, finite number of feature descriptions,
finite accuracy of the measurements, and so on. Het-
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erogeneous feature descriptions of objects, including
information on the “input” and “output” variables,
belong to one of three classes: (1) Boolean features, (2)
so-called “categorial” features, and (3) numerical fea-
tures. This classification is not arbitrary but is based on
the fundamental properties of lattices that arise during
the analysis of poorly formalized problems [1].

Earlier, we have demonstrated (Theorem 3 in [1])
that, under regularity conditions for a set , a lattice

 formed over an appropriate topology  is
Boolean. This implies the uniqueness of the comple-
ment of each element of the lattice ( ,

, , where I is the identity
element of the lattice, corresponding to the set X).

For an adequate formalization of a problem, an
arbitrary element of the lattice corresponds to a single
value of a feature, either original or “synthetic.”
Therefore, for any feature with a finite number of val-
ues , , there is a set of

disjoint subsets  of the set X, which map to
some vertices of the Boolean lattice . To each
such subset, there corresponds a single complement,

 = .
The analysis of the mutual arrangement of these

subsets of the set X in the lattice  points to the
existence of three fundamentally different types of fea-
tures. If a k-th feature is Boolean (i.e., ), all
objects with this feature are related to the lattice vertex
corresponding to the set , while all other objects
are contained in the complement set  =

.
The “categorical” (“enumerative”) features do not

imply ordering of the values  of the set ; therefore,
they are projected onto certain antichains of the lattice
(by definition, an antichain :  :

  ).

In the case of a numerical k-th feature, the set  is
linearly ordered ( ). Therefore,
numerical features are projected onto specific chains:
the linearly ordered subsets of the Boolean lattice

. By definition, a chain :
 : , so that the chains cor-

responding to the numerical features consist of the sets

,  ∪ , …, , …, I.
The imaginary “motion” from the minimum element

 of the corresponding chain to the maximum
element of any chain (the identity, I) corresponds to
the enumeration of the values  of the
numerical feature in increasing order. It is also obvious

X
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that the quantiles of a numerical feature correspond to
some subchains of fixed length.

Each value  of the k-th numerical feature corre-
sponds, on the one hand, to the subset  =

 of the set of objects (which is also repre-
sented by some lattice vertex) and, on the other hand,
to the partition of the corresponding chain into two
subchains, the lower subchain 

and the upper subchain .
Thus, a numerical target variable is represented by a

linearly ordered set of subsets of the set of objects (prece-
dents). To each value  of the k-th target vari-
able, , , there corresponds a set of
objects  and its complement , which,
respectively, define two disjoint classes of objects in
the set of precedents: ϕ  =  and
ϕ  = . It is obvious that the col-
lection of the points ,  on the
plane represents an empirical distribution function
(EDF) of the k-th numerical feature.

Within the theoretical framework developed, the
definition of a pair of classes  = ϕ  and 

= ϕ , , , allows
one to define the corresponding classification prob-
lem. Suppose that some of the columns  in the set
of precedents  are uncertain or
“undefined” (i.e., contain the value “Δ”), for exam-
ple, the range of columns , , 1 ≤

, , and the range of columns
, , , Id =

. Then, calculating the values in the d-th col-
umns  as  = , we obtain a system
of classification problems of objects with respect to the
classes of values of the k-th numerical variable  =

 =  = , where
, , . The follow-

ing theorem is obvious.

Theorem 1. Suppose that an algorithm  correctly
solves the problem of predicting the k-th numerical vari-
able with the desired accuracy level , i.e.,

 ≤ ε. A correct algorithm 
exists if and only if there exists a series of correct algo-
rithms for solving each problem of the system .
Suppose that, for each value , there exists a correct
algorithm ,  = , that repro-
duces the information matrix  on the
basis of the information matrix . Then, each of
the values  represented in the k-th description of
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the i-th object  is uniquely assigned a Boolean vec-
tor, equal to the vector , in which all posi-
tions corresponding to  are ones and all posi-
tions corresponding to  are zeros. In other
words, for an arbitrary object with , there
holds , , while, for β =

, there holds ; i.e., the
sequence of numbers  monotonically
decreases with an inflection point at . Thus, the
set of correct algorithms { } for solving problems
from the system  allows one to point out an
exact value of the k-th numerical variable for an arbi-
trary object, which corresponds to the inflection point

. The latter is equivalent to the existence of a cor-
rect algorithm . Conversely, if there exists a correct
algorithm , then the reproduction of monotone
Boolean vectors  is trivial. The theorem is
proved.

Corollary. A necessary condition for the correctness of
all algorithms from the set { } is the monotonic
increase of a function defined by the set of ordered pairs

. In the case of correct

algorithms , this function is identical to the EDF
of the k-th numerical variable.

Theorem 1 shows that, on the basis of the results of
calculations by classification algorithms for solving
problems of the system , each of which indi-
cates the membership of an arbitrary object in a cer-
tain numerical interval, one can actually predict the
numerical variable (or the most likely range of values
of the variable). In the case of correct algorithms ,
such a prediction is unique.

Note that real classification algorithms are not, as a
rule, correct, especially when analyzed in cross-valida-
tion setup. Hence, in the actual computational experi-
ments, some results of classification 
do not correspond to the values , so that the
above-described monotonicity of the number
sequence  would be disturbed. The estimates
of the degree of the monotonicity disturbance of

 (by combinatorial functionals, approxima-
tion by a sigmoidal function, etc.) can be used to assess
the quality of the predictions of the numerical vari-
able.

It is also important to note that the results of clas-
sification corresponding to the value , 
+ b], or the results of prediction of the values of the k-
th variable, , obtained by some real algo-
rithms , , and others, can be considered as
some “synthetic” features, which have not been ini-
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tially represented in the information matrix .
These synthetic features, both numerical and Bool-
ean, can be placed in the t-th positions of the vectors

 of the information matrix, thus forming a certain
“derived” information matrix, , or the informa-
tion matrix with second-level features. Successively con-
tinuing the process of generation of the synthetic fea-
tures according to the multilevel perceptron paradigm,
one can obtain information matrices with the features
of the third level , of the fourth level ,
and so on.

Thus, finding adequate solutions to the system of
classification problems  is fundamentally
important for solving the problem of predicting a
numerical variable and for finding some synthetic fea-
tures that are informative with respect to the target
variable under consideration. Within the algebraic
approach, the search for such solutions starts from
studying the solvability/regularity properties of the
classification problems involved.

4. SOLVABILITY/REGULARITY CONDITIONS 
OF THE CLASSIFICATION PROBLEMS 

INVOLVED IN PREDICTING A NUMERICAL 
TARGET VARIABLE

The fundamental criteria of solvability and regular-
ity of classification problems, correctness of algo-
rithms, and completeness of algorithmic models, are
analyzed in [4, 5] by means of the factorization and of
the metric approach to the data mining. In the factor-
ization paradigm, heterogeneous feature descriptions
are reduced in one way or other to Boolean features. In
the metric paradigm, one specifies methods for mea-
suring distances between objects and features and then
carries out an analysis of the metric configurations
(ρ-configurations) thus obtained.

The solvability of a problem is defined as the con-
sistency of the corresponding set of precedent. For-
mally, a problem is solvable if the set of algorithms (the
algorithmic model)  is nonempty. The regularity
of a problem is the requirement of a sort of “collective
solvability” of a problem: a problem from a set of prob-
lems Z is regular if it is solvable and all problems from
the equivalence class (neighborhood) are solvable;
i.e., the regularity of a problem is sufficient for its solv-
ability. By the correctness of an algorithm or an algo-
rithmic model is meant the correspondence of the
algorithm or the model to the sets of precedents. The
completeness of an algorithmic model  implies
that, for every regular problem, there is at least one
correct algorithm in the algorithmic model .

Suppose we are given a set of original descriptions
of objects X, a formalization method , sets Ii and If,
and a space . For any , a set of prec-
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, , and factorization method

 : ,  that checks the
membership of the values  of the k-th feature in
the same equivalence class of the values of features, we
formulate the solvability and regularity criteria of the
corresponding problem with Boolean output variable
(a classification problem ) [4]:

• solvability criterion of problem :

• regularity criterion of problem :

where  denotes a method for calculating the
elements of the mask χ with respect to the set of prec-
edents ϕ(a).

For given algorithm  and vector of

parameters  of the algorithm, which reflects the
“internal settings” of the algorithm, we formulate a
correctness criterion of the algorithm :

For criteria (1)–(3), we have obtained the respec-
tive combinatorial functionals , ,
and  that characterize the “degree” of satis-
fiability of the criteria for specific , and .

Criteria (1)–(3) make it possible to formulate vari-
ous methods for calculating feature selection masks
(for example, on the basis of the dead-end property of
masks with respect to the solvability/regularity criteria
[4, 5]) according to some set of precedents . The
masks  = , , 
thus obtained imply the existence of two classes of fea-
ture values: informative (  = 1) and noninformative
(  = 0) values. For efficient selection of features, it is
expedient to rank the features according to some func-
tional of the “informativity” estimate (a smaller infor-
mativity rank corresponds to a greater value of the
informativity estimate) [4].

The metric forms of criteria (1)–(3) can be obtained
if the estimate of the informativity of features with
respect to the class  is a metric. Suppose that the
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ρ-configuration  describing the interactions of
features from the set  contains a point , and let
a method for selecting a neighborhood of the i-th
point be given, . Then the informative values of
the features correspond to the points in the neighbor-
hood of the point , and the feature selection mask
is calculated as  ∈ . Substi-
tuting these operations into definitions (1)–(3), we
obtain the corresponding parametric criteria whose
satisfiability depends on the radius of the neighbor-
hood. These criteria imply, in particular, that the con-
dition , , ,

, is a constructive criterion for assessing the
“quality” of the generated sets of feature descriptions
[5].

The results presented in [1, 4, 5] allow us to obtain
the solvability and regularity criteria for the prediction

problem of the k-th numerical variable. According to
the Theorem 1, the existence of a correct solution to a
given problem is equivalent to the existence of correct
solutions to the system of classification problems

. Since a correct algorithm is possible only
under the condition of solvability of the problem [4],
the solvability of the prediction problem of the k-th
numerical variable is equivalent to the solvability of each
problem of the system :

For further exposition, we define a condition of the
partial regularity of the set of precedents Q with respect to
the k-th numerical variable:

The partial regularity condition (2.1) implies that,
for a given factorization method , , the
feature descriptions of all objects included in the set of
precedents ϕ( ) formed for each value  of
the k-th numerical variable are different from the fea-
ture descriptions of all the other objects of the prece-
dent set Q.

Theorem 2. For the solvability condition (1.1) to hold,
it is necessary and sufficient that the partial regularity
conditions of the set of precedents Q with respect to the k-
th numerical variable should hold. In the lattice-theo-
retical interpretation, to each value  of the k-th
numerical feature, there corresponds a subset  =

 that splits the corresponding chain of

the Boolean lattice  into lower
 and upper  sub-

chains. Consider any two “neighbor” values of the k-
th variable,  and , , which cor-
respond to the two “neighbor” problems

 and  in the system of prob-
lems . To satisfy the condition (1.1), each of the
problems  and  should be solv-
able. Comparison of the two pairs of the lattice sub-
chains corresponding to the values  and  shows

that, to the subset of objects  = ,
there correspond mutually exclusive memberships of
the classes for b – 1 and b, so that  =

. Therefore, for the simultaneous solvability
of any neighbor problems  and

, the feature descriptions of elements of the
subset ϕ( ) should contain features that allow

one to distinguish the elements of the set ϕ( )
from all the other elements of the subset ϕ( )
and from all elements of the subset ϕ( ). The
fulfillment of this requirement for all 
corresponds to the partial regularity (2.1) in the
hypothesis of the theorem. Conversely, the fulfillment
of the partial regularity guarantees the solvability of
each problem of , since, in each of these
problems, all elements of each subset ϕ( )
always belong to the same class of objects defined by
the values . The theorem is proved.

Corollary. The “complete regularity” of the set of
precedents Q, defined by condition (2.1) is sufficient for
the existence of a partial regularity in the hypothesis of
the theorem. The regularity condition (2) is stronger
than the condition of partial regularity (2.1), since it
even guarantees the distinguishability between objects
within each of the subsets ϕ( ) of a given set of
precedents.

The satisfiability and combinatorial testing of the
conditions (1), (2), (1.1), and (2.1) depend on the
choice of the binary functions  defining the mem-
bership of two values of the j-th feature in the same
equivalence class. In general, the combinatorial testing
of the conditions (1), (2), (1.1), and (2.1) is performed
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in quadratic time, о(|Q|2). When  can be repre-
sented as a product of values of some unary function,

 = , a transition is possible
from quadratic to subquadratic testing time of the con-
ditions (1–2.1).

Theorem 3. If each of the functions  can be repre-
sented on the set of precedents Q as a product  =

, , then this fact is sufficient for
the combinatorial testing of the conditions of solvability
and complete and partial regularity in subquadratic time
of about о(|Q|ln|Q|). The possibility of calculating a
value of the function  as a product of 
and  corresponds to some Boolean feature gen-
erated on the basis of the tested numerical feature
when calculating the conditions (1), (2), (1.1), and
(2.1). If each of the functions  is factorized in a
similar manner, then the information matrix of the set
of precedents Q is uniquely transformed into a set of
Boolean vectors. Such a set of vectors can be ordered
with the use of subquadratic sorting algorithms in log-
arithmic time о(|Q|ln|Q|); low-dimensional Boolean
vectors admit a so-called “index ordering” in a quasi-
linear time о(|Q|). The regularity condition (2) corre-
sponds to the absence of the repeated Boolean vectors,
which is checked by a single pass of a sorted array in
time о(|Q|). When testing the solvability (1), (1.1) and
the partial regularity (2.1) conditions, repeated vectors
are allowed under the condition that each of them cor-
responds to a single class corresponding to the value

 of the k-th numerical variable, which is tested in

time  ·   o( ) (since

 and, as a rule, ). The
theorem is proved.

The condition  can eas-
ily be satisfied when the j-th feature is Boolean or cat-
egorial. In the case of numerical values of the features,
this condition can be satisfied when defining the cor-
responding quantiles of values (in particular, those
based on the data on the measurement accuracy of
numerical values, EDF modes, etc.). If one uses cer-
tain statistical significance criteria for numerical fea-
tures as a basis for defining , then the function 
can hardly be represented as the product of some
unary .

Note that the testing of the conditions (1), (2),
(1.1), and (2.1) may involve data on the “synthetic”
features, whose values are placed in the t-th positions
of vectors of the information matrix ( ), including
synthetic numerical features, synthetic Boolean fea-
tures of the second level (representative sets), features
of the third level (representative sets of representative
sets), and so on. In any case, one should calculate the
“informativity” of the original and of the synthetic
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features before testing the conditions (1), (2), (1.1),
and (2.1).

5. THE “INFORMATIVITY” ESTIMATES
OF THE ORIGINAL 

AND SYNTHETIC FEATURES
Within the confines of the theory of combinatorial

solvability [4–7], the term “informativity” is used in
the sense of a numerical estimation of the relative dis-
tribution of the values of a feature between the classes
of objects, rather than in the sense of estimation of the
Kolmogorov complexity [10] or in the sense of algo-
rithmic information theory [11]. The more frequently
a certain subset of a feature value is encountered in a
given class of objects of the set of precedents 
and lower – in all the other classes, the higher will be
the informativity of this feature value in respect to this
class.

The calculation of the feature selection masks
 when testing the solvability and the regularity

conditions on the basis of ordering features according
to an informativity estimate allows one to perform an
efficient selection of the informative feature values. In
particular, the iterative addition of features (arranged
in decreasing order of the informativity functional)
performed until the solvability/regularity criterion is
satisfied allows one to find cul-de-sac (dead-end)
masks  [12–14].

Suppose that the d-th column of the matrix of
information  of the set of precedents , 
determines the membership of objects in a class

 with respect to which the informativity esti-
mate  of the j-th feature is calcu-
lated. Let  be a renumbering function such that

 ≥  ≥  ≥
, , and there exists the inverse

function, , which calculates the rank of informa-
tivity of the j-th feature with respect to the class .
Then the elements  of the feature selection mask
are calculated according to the maximum admissible
informativity rank (  = ) or
using the minimum admissible informativity 
(  = ) or as dead-end masks [13,
14], etc. The choice of a specific method for calculat-
ing a mask  should be made by an expert with
regard to the specificities of a particular problem.

To calculate the estimates , we can apply
various functionals that estimate the differences
between the distribution frequencies of feature values
in the classes [12], and so on. Moreover, the method of
calculating the weights of the features that is used
during “training” of an algorithm can be simultane-
ously considered as a method for estimating the infor-
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mativity of the features (the value of the weight of a
feature would be then the estimate of “informativity”).
Such ad hoc estimates of the informativity of features,
although allowing one to solve the corresponding
technical problems during the analysis of conditions
(1), (2), (1.1), and (2.1), are of purely empirical char-
acter. The lattice-theoretical approach, developed in
the present series of papers, to the analysis of problem
formalization allows one to obtain informativity esti-
mates of a more fundamental character.

In [1], we demonstrated that the “interactions”
between heterogeneous feature descriptions (includ-
ing classes of objects) can be considered in terms of the
relations between the corresponding chains, anti-
chains, and vertices of the lattice . In the lat-
tice , the class  corresponds to the vertex

, and the class , to the vertex .
Consider the relations of the class  with the j-th fea-
ture.

Let the j-th feature be Boolean, ,

, so that the lattice points  and  cor-
respond to this feature. All possible relations between
the feature and a class are described in terms of four
subsets of the set :  = ,  =

,  = , and 

= . The cardinalities of these subsets
can apparently be placed in a 2 × 2 factor table to
which one applies the exact Fisher’s test. The proba-
bility of a random set of values in the factor table is esti-
mated on the basis of the obvious combinatorial formula
and corresponds to the hypergeometric distribution:

 = .

The stronger the difference between the distributions
of the values of the j-th feature over the classes  and

, the smaller the value of p, so that the informativity
estimate corresponds to the functionals 1 – , 1/ ,
etc. It is well known that, in the case of sufficiently
large values of , it is appropriate to
apply the Pearson criterion (χ2) to speed up the com-
putations.

When the j-th feature is either categorial or numer-
ical,  = , , each value of the

feature corresponds to a lattice vertex . Then

the relations between the vertices , , and

 are estimated by the set of values , so
that the informativity estimate corresponds to the
functional of the type 1 – , etc.
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When all features in the information matrix 
are numerical (which is important in the case of the
problem of predicting a numerical target variable), the
lattice-theoretical approach points to the possibility of
applying another fundamental method of nonpara-
metric statistics: exact or asymptotic forms of the
Kolmogorov criterion [15, 16]. In the lattice ,
the j-th numerical feature corresponds to a chain  =

 in which the cardinality of the
sets is described by the EDF of the j-th numerical fea-
ture,  = . The relations between the

chain  and the classes  and  are described by the

set of conjunctions , , which cor-

respond to the splitting of  into two EDFs 

=  and  = .

To estimate the differences between the EDFs  and

 one can use a number of statistical functionals,
including the maximum deviation between two EDFs

 = . The values of

 allow us to assess the satisfiability of the cor-
responding nonparametrical criteria (for instance, the
Kolmogorov–Smirnov or Kolmogorov–Bol’shev cri-
teria). Note that characterizing the differences in the
distributions of the values of the j-th feature between
the classes  and  by the values of the function

 represents an informativity estimate of the j-

th numerical feature with respect to the class .

Thus, depending on the specific features of the
information matrix  of the given set of prece-
dents , we can calculate various “informativity” esti-
mates of the j-th feature, , with respect to the
d-th class of objects, , . To each
estimate , there corresponds a special ranking
n of features when calculating the masks  used
for testing the solvability/regularity conditions. The
analysis of the relationships between different esti-
mates  presents a separate research problem.

Within the present study, we assume that the cho-
sen estimate  can, in a sense, be used for search-
ing for solutions to the prediction problem of a numer-
ical variable. The applicability criteria of a particular
method for calculating the estimate  can be for-
mulated on the basis of the properties of the function

 defined by the set of pairs
 and of the function  :

 defined by the set .
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When splitting the chain  into lower and upper
subchains corresponding to the value  for different

 of the same j-th feature, we obtained different esti-
mates and ranks of informativity, different frequencies
of feature values in the classes  and , and other
numerical characteristics of the features. In other
words, depending on the interval of values of the k-th
numerical variable, different predictors make different
contributions, which can be observed as a variation in
the weights of the features obtained when adjusting the
corresponding algorithms. Accordingly, the functions

 and  may exhibit different properties
along the axis of values of the predicted numerical
variable:

• Quasi-constant behavior: the informativity esti-
mate of the j-th feature is independent of the interval
of values of the k-th variable. It corresponds to similar
distribution frequencies of the values of the j-th fea-
ture over all pairs of classes  and  and, hence, to
low informativity of the feature.

• Quasimonotonic behavior: certain values of the j-
th feature are encountered considerably more fre-
quently for higher (or lower) values of the k-th numer-
ical variable.

• Quasi-quadratic behavior: certain values of the j-
th feature are more informative for the endpoints of
the interval of values of the k-th variable (or, con-
versely, for the median of the interval).

• Multimodality: a periodic character of the rela-
tionship is possible between the predicted variable and
the feature; this question can be studied by autocor-
relation and other methods of signal analysis.

Each of these properties of the functions 
and  can be estimated quantitatively over the
system of problems . For example, the mono-
tonicity property can be estimated by a combinatorial
functional and calculating the linear, sigmoidal, and
other approximations. The experimentally established
presence of the monotonicity properties in one or
other form on one or other interval of the range of val-
ues points to the preservation of regularity within a
given interval of values. Generally, the greater the dif-
ference of the observed behavior of the functions

 and  from the quasi-constant behavior,
the higher the informativity of the j-th feature with
respect to partitions into classes / . The visual-
ization of the functions  and  is an excel-
lent instrument for the expert analysis of the feature
descriptions involved in a particular problem.

Analysis of the informativity of the features is
important not only for testing the solvability/regular-
ity conditions, but also for choosing the generation
procedures of synthetic features. It is quite obvious
that the use of particular “synthetic” features is expe-
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dient only when their informativity in some sense is
higher than the informativity of the original feature
descriptions. Therefore, instead of dividing features
according to levels and methods of their generation,
one should combine all features, both original and
“synthetic,” into a single table of precedents (the t-th
positions of the vectors of the information matrix,

) and then analyze the informativity of the entire
set of both original and synthetic features.

6. THE PROCEDURES OF GENERATING 
SYNTHETIC NUMERICAL FEATURES

AND THE ALGORITHMS FOR PREDICTION 
OF NUMERICAL VARIABLES

Within the approach proposed, both the prediction
of the k-th numerical variable and the generation of a
numerical feature informative with respect to the k-th
numerical variable are performed by algorithm

 (  is a vector of parameters), which
calculates the column of the corresponding values on
the basis of the information matrix , I = 1, …, N.
In the case of prediction of a numerical variable, the
column  is the sought answer, while, in
the case of generation of a synthetic numerical feature,
the results of calculations are placed in the t-th “unde-
fined” column (i.e., the column containing a value
“Δ,” see Section 2 of the paper) , ,

, with the formation of a certain
“derived” matrix .

The algorithm  can predict the values of the
k-th variable “directly” (for instance, a regression
approach). Alternatively, the prediction can be based
on the classification algorithms  that solve the
problems from the system . In the latter case,
the EDF of the k-th numerical variable is formed for
each point of which or for special intervals of which
(percentiles, modes, etc.) the classes /  are
formed. On the basis of ranking with respect to the
functional  and testing the solvability/regular-
ity criteria, informative features defined by the mask

 are selected; if necessary, an expert analysis of
the functions  and  is carried out for each
selected feature.

When all features of the objects are Boolean (i.e.,
when the original feature descriptions can be factor-
ized according to the equivalence relation  =

), the algorithms  can be repre-
sented as logical rules (disjoint normal forms, DNFs).

In this case, the vector of parameters , 
contains information on the corresponding represen-
tative sets [2]. An analysis of the informativity of indi-
vidual features and of representative sets and their
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θkÂ ( )b
(Q,k)Ζ

+
kС b

−
kС b

Λ(d, j)

j(γ (Q))
Λ�

bk(λ ) �

bkJ(λ )

δ 1 2(v , v )j

δ ∧ δ� �

1 2(v ) (v )j j θkÂ ( )b
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combinations can be performed by means of the B-
covering algorithm [17], using the methods for estab-
lishing metric condensations [7–9] or the methods of
aggregation of Boolean variables within the classifica-
tion theory of feature values [7]. Either of these meth-
ods allows one to perform a subquadratic search for
the most efficient systems of logical rules.

Within the algebraic approach, each classification
algorithm  is constructed as a superposition

 =     
which includes the parameter vector  calculated as a
result of “training” the algorithm  on the set of
precedents . As a rule, the correction operation 
gives a certain numerical estimate of the membership
of the i-th object in the corresponding class. Accord-
ingly, both the algorithm  and the partial com-
position “recognition algorithm + corrector”

   generate synthetic numerical
features.

In the simplest case analyzed in the present study,
the vector , , contains the
weights of features, and the linear operator 
is defined as , where “ ” is the

Hadamard (element-wise) product of vectors and 
is the matrix transposition operation. Accordingly, the
result of application of  to the i-th object 
represents a linear form . As the
correction operation , one uses a
linear transformation, logarithm, exponential func-
tion, power function, and other elementary functions.
The prediction algorithm  may represent a
regression formula or be calculated using “neural net-
works” or other known approaches.

The systems of equations 
and  ≤ ε appearing in Theorem
1 provide a basis for estimating the values of vectors of
feature weights . As a rule, any of these systems
of equations is either underdetermined or overdeter-

mined and therefore does not have a unique solution.
Therefore, one can apply various methods to deter-
mine the values of : methods of computational lin-
ear algebra (singular decomposition, etc.), neural net-
works, stochastic approximation [18], and so on. In
particular, stochastic approximation implemented in
the form of an iterative multistart procedure allows
one to develop subquadratic algorithms for calculating

 that terminate the calculations upon reaching a
given convergence criterion or, conversely, a specified
divergence criterion.

The methods of generation of synthetic features
mentioned here can be used for reducing problems
with heterogeneous numerical features to a problem
with numerical features. Under operators  and
others, any Boolean feature can be replaced by or
complemented with synthetic numerical features.

7. CROSS-VALIDATION ESTIMATES
OF SOLVABILITY, REGULARITY,

AND CORRECTNESS

The informativity indices of the j-th feature
( , , , ) and the masks 
are calculated on the basis of a given set of precedents

. For a given sampling operator  of the set X of orig-
inal descriptions of objects, one obtains different sets
of precedents , , each of which corre-
sponds to different values of the above-mentioned
informativity indices. As a result, to each j-th feature,
original or synthetic, there corresponds a set of esti-
mates ,  rather than a single
number , a set of functions rather than a single
functions , and so on. These differences will
affect the selection of features when testing the solv-
ability, regularity, and correctness conditions.

In [4, 5], for a given sampling operator , we
obtained the following cross-validation forms of crite-
ria that include testing over the set of samples :

• solvability criterion of problems , :

• regularity criterion of problems , :

• correctness criterion of the algorithm :
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For criteria (1.2), (2.2), and (3.2), we have obtained
appropriate combinatorial functionals. For example, the

functional  = ,

, , corresponds to testing (1.1) on all
“training” – “testing” pairs of sample datasets, while

the functional  = ,  esti-

mates the results of testing on a single, training, sample
over all samples . The difference 
describes some “overfittedness” related to the algo-
rithm for calculating a mask , i.e., to the feature
selection procedure on the basis of the solvability cri-
terion. Functionals for cross-validation estimates of
regularity  and  and correctness 
and  are obtained in a similar manner.

In addition to these functionals, it is practically
convenient to use similar cross-validation functionals
based on the known functionals of descriptive statis-
tics. When predicting the values of a numerical vari-
able in regression analysis, one can use correlation
coefficient and the residual. By analogy with the com-
binatorial functionals  and , one can
obtain cross-validation functionals for the correlation
coefficients , , and others.

8. EXPERIMENTAL TESTING
OF THE METHODS

The developed approaches to the synthesis of
informative numerical features have been practically
tested on a unique sample of biomedical data on
patients (n = 400) containing information on 140
diagnoses of ICD-10, blood test results, cardiointer-
valographic (heart rate variability, HRV) examination,
completion of clinical questionnaires, etc. (552 indi-
cators of patients state in total) [19]. The problem was
raised of quantitative prediction of the magnesium
concentration in blood plasma on the basis of nonin-
vasive examination of a patient (HRV data, clinical
symptomatics, medical history). From the viewpoint
of the problem area, this problem is quite hard, since it
includes the widely spaced levels of the biological sys-
tems [20]: magnesium ion concentrations in blood
(the lowest level of the structural organization of a bio-
logical system, the atomic level) and clinical indicators
of the patient’s state (a high level of a biological sys-
tem, the organism level).

The efficiency of solving the problem was esti-
mated in cross-validation experiments including ten
random partitions of the dataset into “training–test”
samples with the size ratio 1 : 1. The original dataset
was made regular (Theorem 2 with corollary). As the
informativity estimate , we used functionals
based on the exact Fisher’s test; the masks 
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were calculated in accordance with (2.1) by iterative
testing of the partial regularity criterion [12–14] with
the use of the EDF modes as the factorization method

 (this corresponds to the hypothesis in the Theorem
3). To generate synthetic numerical features, we used
a composition . For linear rec-
ognition operators , we used linear transfor-
mation, logarithm, the exponential function, and the
power function as the correction operator . In the
case of the logical rule method, we used Boolean val-
ues of the algorithms  as synthetic features (see
Theorem 1). The results of the experiments are sum-
marized in Table 1.

The SVD proved to be the worst alternative for gen-
erating the synthetic features, especially when SVD
was also used to predict MgPK (  = 0.92 and

 = 0.19 – apparently, a prominent overfitting
due to the fact that the system of equations  =

 is apparently overdetermined). A similar situ-
ation was observed in the case when we used neural
networks for generating “synthetic” numerical fea-
tures. At the same time, iterative procedures of sto-
chastic approximation, although in practice they did
not always reach a verifiable convergence, demon-
strated much better results (  = 0.45 and

= 0.45), increasing the accuracy of numerical
prediction to a practically acceptable level (the stan-
dard deviation of the MgPK variable values in the test
dataset was 0.16 mmol/l, while the actual measure-
ment accuracy of the concentrations was about
0.05 mmol/l).

It is interesting that the method of logical rules
allows one to generate synthetic Boolean features (i.e.,
the results of calculation by the algorithms , as in
Theorem 1) that are useful for predicting MgPK. The
use of a relatively small number (typically, 5 to 8) of
informative Boolean variables for establishing the cor-
responding representative sets to obtain the matrix

 and a stochastic approximation or SVD to pre-
dict MgPK by the matrix  also allowed us to
obtain an acceptable quality of predictions (  =
0.52 and  = 0.40).

On the whole, the best result of prediction was
obtained when using logical rules and stochastic
approximation for generating features (  = 0.53
and  = 0.49, Fig. 1; standard deviation of
MgPK concentrations in the test of 0.10 mmol/l). The
addition of further levels (i.e., the generation of the
“derived” matrices  and , etc.) did not
increase the prediction accuracy.
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Analysis of the synthetic features obtained by the
methods of logical rules and stochastic approxima-
tion, in addition to increasing the quality of predic-
tions, has allowed us to obtain results important for a
deeper understanding of the problem area. The analy-
sis of the profiles of  and  for informative
features has shown that, for predicting very low values
of MgPK (<0.4 mmol/l, extremely strong deficiency
of magnesium), the most informative indicators were
HRV spectral indicators %HF, LF, and others; the
scoring assessment of the patient’s health state; and
the dynamometry data. To predict a pronounced defi-
ciency of magnesium (MgPK < 0.7 mmol/l), the most
important features were the periodicity and the vari-
ability parameters of HRV (RRNN, SDNN, etc.), the
scoring assessment of the patient’s health state, and
the indicators from the diet questionnaire. In the case
of a moderate magnesium deficiency (MgPK < 0.82
mmol/l), the most informative indicators were the
dynamometry and a few specific HRV indices.
Finally, in the case of magnesium sufficiency (MgPK
> 0.85 mmol/l), the most informative indicators were
the periodicity/variability of HRV and the diet ques-
tionnaire. The relationships established are in agree-

Λ(d, j) −1
dJ (j)

ment with the complex physiological effects of mag-
nesium ions known from the literature [21].

In conclusion, we would like to emphasize that the
optimal combination of specific methods of genera-
tion of synthetic features and of prediction of a target
numerical variable essentially depends on the particu-
lar problem under study and the datasets involved. For
example, if we restrict the number of input variables in
the above-described problem of predicting MgPK to
the HRV data (24 indicators in total), then the best
solutions (albeit of poor quality,  = 0.31 and

 = 0.16) will be obtained using SVD for gener-
ating features and stochastic approximation for pre-
dicting the MgPK variable.

The application of the described approaches to the
problem of predicting secondary protein structure [14]
has shown that the best solutions (  = 0.87) are
obtained when using logical rules and stochastic
approximation for generating features and neural net-
works for predicting the values of variables.

Analysis of a sample of crystal structures of high-
temperature cuprate superconductors
(HgBa2CuO4+d [22], etc.) has shown that the opti-

l ζ,
ˆ( )cr X

ζ,
ˆ( )c cr X

ζ,
ˆ( )c cr X

Table 1. Cross-validation estimates of the effectiveness of various approaches to the generation of synthetic numerical fea-
tures and predicting a numerical variable in the problem of quantitative prediction of magnesium concentration in blood
plasma (the variable MgPK). The values of the functionals  and  are given only for the best model (b.m.) of
generation of synthetic features in the corresponding series of experiments.  is the correcting operation in the model, m1
is linear transformation, m4 is logarithm, m5 is exponential function, and m6 is square root. To calculate the vector  of
weights, we used singular vector decomposition (SVD), a three-level artificial neural network (ANN), or a multistart sto-
chastic approximation (MSA) procedure. For generating synthetic Boolean features, we used a method of logical rules
(LR). “None” indicates that only the original matrix  was used.

Generation of synthetic features 

(calculation of )
Prediction 

of the variable MgPK b.m.

None SVD 0.92 0.18 m6
None ANN 0.21 0.12 m1
None MSA 0.42 0.40 m1
SVD SVD 0.92 0.19 m5
SVD ANN 0.25 0.07 m1
SVD MSA 0.51 0.27 m1
ANN SVD 0.82 0.16 m1
ANN ANN 0.29 0.18 m1
ANN MSA 0.44 0.30 m1
MSA SVD 0.82 0.27 m1
MSA ANN 0.22 0.25 m1
MSA MSA 0.45 0.45 m5
LR SVD 0.54 0.39 m5
LR ANN 0.27 0.27 m1
LR MSA 0.52 0.40 m1
MSA, LR MSA 0.53 0.49 m6
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ˆ( )c cr X
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mal solution of the problem is obtained when one uses
logical rules for generating the “synthetic” features
and stochastic approximation for predicting the values
of the numerical variable (the critical temperature of a
superconductor Tc,  = 0.77).

9. CONCLUSIONS

In the case of poorly formalized problems, there
exist (infinitely) many methods for generating features
and, accordingly, for the feature descriptions of one
and the same problem. The solvability and regularity
criteria of the classification problems involved (espe-
cially the partial regularity criterion) allowed the
selection of the most informative features for the pro-
cedures of generation of synthetic features, which were
subsequently used for constructing recognition/classi-
fication or the numerical prediction algorithms. The
augmentation of the set of original features with syn-
thetic features has allowed us to increase the quality of
predictions of numerical variables in the datasets
tested. The subquadratic algorithms, proposed in this
paper for data mining and for predicting the output
numerical variables, are easily scaled when imple-
mented on multiprocessor systems and thus are quite
useful for the analysis of so-called “big data” in differ-
ent areas.

ζ,
ˆ( )c cr X
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